
BoomFS: A Declarative Approach To Building

Distributed File Systems

Peter Alvaro, Neil Conway

December 19, 2008

Abstract

While architectures for distributed computing are
changing rapidly, techniques for building distributed
systems have remained stagnant. As distributed com-
putation becomes the common case, traditional tech-
niques for building such systems will become increas-
ingly burdensome, because they force programmers
to deal with the mundane details of constructing reli-
able distributed systems rather than concentrating on
the desired computation. This yields programs that
are difficult to construct, understand, modify, and
adapt to new environments. We propose BOOM, an
ongoing project to develop concise declarative speci-
fications for a broad class of scalable distributed sys-
tems. In this paper, we describe the first application
in the BOOM stack: BoomFS, a distributed file sys-
tem that is implemented using a combination of Java
and declarative logic. We show that BoomFS is easy
to understand and modify, and achieves competitive
performance in a preliminary performance study.

1 Introduction

With the widespread adoption of cloud computing,
mobile clients, and manycore processors, computing
architectures are undergoing a period of disruptive
change. In the near future, nearly every non-trivial
software system will be physically dispersed: dis-
tributed programming will be the common case.

Traditional techniques for building distributed sys-
tems are ill-suited to this new environment. Despite
considerable research, developing fault-tolerant dis-
tributed systems remains enormously difficult and
expensive, and is typically only attempted by expe-
rienced programmers with extensive training in the
field. As more journeyman developers encounter the
challenges of distributed computing as a matter of
course, this situation will become increasingly unten-

able. Better techniques for constructing distributed
systems are urgently needed.

Inspired by prior work on declarative network-
ing [13, 10], we propose a new architectural style for
distributed programs in which policy and protocol are
specified in a declarative logic language, while the op-
erational mechanisms of the program are written in a
traditional imperative language. We are engaged in
the Berkeley Orders of Magnitude (BOOM) project,
which aims to use this style to build cloud computing
infrastructure components that operate at orders of
magnitude greater scale but are specified in orders of
magnitude less code than traditional approaches. In
Section 2, we discuss the problems with traditional
approaches to building distributed systems in more
detail, and outline the BOOM vision in contrast.

The first system we have built using this architec-
tural style is BoomFS, a distributed file system simi-
lar to the Google File System [7]. Our goal in build-
ing this system was not novelty of design: although
BoomFS supports multiple master nodes, its archi-
tecture is otherwise very similar to GFS. Instead, our
aim was to show that a GFS-like file system can be
easily and concisely implemented in the BOOM style.
The resulting system should achieve competitive per-
formance, and be easy to understand and adapt to
new environments and policies. In Section 3, we de-
scribe the basic architecture of BoomFS. In Section
4, we detail how this architecture was realized us-
ing a mixture of declarative logic and Java. In Sec-
tion 5, we report on a preliminary performance study
comparing BoomFS and the Hadoop File System
(HDFS), an open source implementation of GFS [2].
We discuss plans for future work in Section 6, de-
scribe related research in Section 7, and conclude in
Section 8.

1



2 The BOOM Vision

The fundamental problem with traditional techniques
for building distributed systems is that they pro-
vide the wrong abstractions to the programmer. Dis-
tributed systems are typically implemented with tools
developed for single-machine programs and only su-
perficially adapted to the challenges of a distributed
setting. Programmers are forced to deal with the
tedious details of communication, synchronization,
and distribution. As a result, the essence of the dis-
tributed computation is obscured by a thicket of boil-
erplate details. Evidence for this can be seen in the
fact that distributed algorithms such as Paxos can
be stated in a page of pseudocode, but require many
thousands of lines of code to implement using stan-
dard tools [5].

Traditional tools operate at a low level of abstrac-
tion because they force programmers to intermin-
gle the specification of what a distributed program
should do with how it should be achieved. That is,
mechanism and policy are specified together, and im-
plemented in the same language. This approach has
two primary problems: it yields fragile programs that
cannot easily adapt to change, and it results in pro-
grams that are difficult to understand.

For example, consider a client that wants to com-
pute a function over data stored in a compute cloud.
Should the function’s code be sent to the server,
should the data be sent to the client, or should both
code and data be sent to an intermediary? These
alternatives can be viewed as “query plans” that ac-
complish the same objective, but have different per-
formance characteristics. The optimal plan depends
on factors including the relative costs of network
bandwidth, server-side computation and client-side
computation, how much data is required, how expen-
sive the function is, and the frequency with which
the function is invoked or the input data is modified.
All of these parameters are likely to fluctuate, both
within a single environment over time,1 and when
the distributed program is deployed to a new en-
vironment. Traditional approaches to constructing
distributed systems require hardcoding assumptions
about these parameters. This yields fragile programs
that are expensive to modify and difficult to adapt to
new environments.

In addition to being inflexible, the failure to sepa-
rate mechanism from policy it harder to understand

1Internal heterogeneity and performance variability in vir-
tualized environments such as Amazon’s Elastic Compute
Cloud has been well-documented in recent work [18].

and reason about these programs. The policies and
protocols of a distributed program are typically its
most interesting parts, and often the hardest to get
right. In contrast, the mechanisms that achieve those
policies are often straightforward but verbose. By
implementing policy together with mechanism, the
mundane details of the latter obscure the essential na-
ture of the former, harming comprehensibility. Fur-
thermore, a language that is appropriate for imple-
menting mechanism is unlikely to be ideal for speci-
fying policy, and vice versa. There are many exam-
ples of algorithms that can be concisely expressed in
an appropriate declarative language, but are much
harder to write in an imperative language (e.g. [14]).

Inspired by the data independence provided by the
relational model, we aim to provide network scale
independence for distributed systems by separating
the programmer’s intent from its concrete realiza-
tion [10]. In BOOM, a distributed system is com-
posed of two types of components:

1. imperative components implement the basic
units of functionality of a distributed system.
Imperative components are typically used to per-
form tasks like I/O and numerical computation.
These tasks are usually best stated in an impera-
tive language like Java or C++, particularly be-
cause these components often involve interaction
with the operating system or native libraries.

2. declarative components specify the bulk of the
logic of the distributed system. These compo-
nents are written as a collection of logical rules
that describe the coordination and composition
of the imperative components. Essentially, the
declarative components are responsible for de-
ciding “what” a member of the distributed sys-
tem should do; the imperative components are
responsible for realizing those actions. A declar-
ative component is essentially a join between a
stream of events and a database. Evaluating this
query over an event stream results in producing
more events (either at the local node or a remote
node), inserting new database tuples, or invoking
imperative components.

Declarative components are implemented in a
network-aware declarative logic language, such
as Overlog [13]. This requires the state of the
distributed program to be represented as rela-
tions that are partitioned over the nodes of the
system.

In BoomFS, imperative components are used to

2



efficiently transfer data between hosts. The vast
majority of the file system’s complexity resides in
the declarative components, which decide when and
where data should be transferred. We describe the
realization of BoomFS as a set of imperative and
declarative components in Section 4.

2.1 Declarative Specification of
Distributed File Systems

In many systems, there is a structural separation be-
tween control and data paths. This can be motivated
either by principle (e.g. the separation of mechanism
and policy [12]), or by practical concerns: data and
control paths typically differ in average message size,
and in requirements for consistency and latency. It is
undesirable for data path congestion to delay control
messages.

We argue that in many distributed systems, the
bulk of the intellectual complexity resides in the con-
trol path; this is clearly true of the GFS design. This
is not to say that operational components (zero-copy
I/O, fast checksumming, careful use of caches at vari-
ous levels) are not critical to system performance, but
merely that the bulk of the design and implementa-
tion deal with enforcing and maintaining the various
invariants that make the system behave correctly, in-
cluding replica placement decisions, failure handling,
load balancing and consensus among agents in shared
computations.

Combining these observations, we see that GFS-
like distributed file systems are attractive candidates
for the BOOM approach to implementing distributed
systems.

3 System Architecture

We now turn to the architecture, implementation,
and performance characteristics of BoomFS. The ar-
chitecture of the system is directly inspired by the
Google File System. The design goals and sys-
tem architecture of GFS are well-documented else-
where [7, 2], so we include only a brief discussion of
them here.

Like GFS, BoomFS does not attempt to be a
general-purpose distributed file system. Instead, it
is designed to perform well for a particular class of
workloads and to operate on a particular cluster ar-
chitecture. We focus on achieving good performance
for large sequential reads and writes. Files are as-
sumed to be very large, and are therefore divided

Data 
Node

Data 
Node

Data 
Node

Client

Master
Node

Master
Node

Master
Node

Consensus
Protocol

Control ProtocolHeartbeat Protocol

Client Protocol

Data Protocol

Figure 1: BoomFS architecture

into large chunks that far exceed typical file system
block sizes (64 MB). We focus on delivering high se-
quential read and write throughput and efficient net-
work utilization, rather than achieving low latency or
minimizing total space requirements. Members of a
BoomFS system are assumed to be unreliable com-
modity machines, provisioned with relatively modest
resources. Reliability is achieved by storing multiple
copies of each chunk and scalability is achieved by
spreading file system content over a large cluster of
machines (typically hundreds or thousands).

3.1 System Overview

The major components of BoomFS are depicted in
Figure 1. There are three types of nodes in BoomFS:
master nodes, data nodes, and clients. Master nodes
contain the canonical description of the structure of
the file system. The file system is described by a map-
ping from file names to file identifiers, and from file
identifiers to the sequence of chunks that contain the
file’s content. To avoid a single point of failure, our
design allows for multiple master nodes, which are
kept in synchrony using a consensus protocol (cur-
rently Paxos [11]).

Data nodes are responsible for storing chunks.
They have no knowledge of the structure of the file
system or the identities of any other data nodes. Each
data node periodically sends a heartbeat to the mas-
ter nodes. This notifies the masters that the data

3



node is still alive, and contains a list of the chunks
currently stored at the data node. The masters use
this information to update the mapping from chunk
identifiers to the set of data nodes that might be hold-
ing that chunk. Note that the canonical description
of the content of a data node resides at the data node
itself, not at the master nodes; the master’s copy of
this information is updated lazily.

Finally, client nodes represent application pro-
grams that wish to read and write files. We ex-
pect that applications will interact with the system
through a client library that provides a convenient
stream-like abstraction for files stored in BoomFS.
In the future, we plan to implement the HDFS API,
to allow BoomFS to easily replace HDFS in existing
Hadoop installations.

3.2 File System Operations

To append to a file, a client node begins by contacting
one of the master nodes and requesting that a new
chunk be added to a particular file.2 The master
first generates a new chunk identifier. To ensure that
the state of the file system is consistent across all
the masters, the master uses a consensus protocol
to ensure that all masters will agree to add the new
chunk identifier at the same position in the chunk
list for the appropriate file. Once consensus has been
reached, the master replies to the client with the new
chunk identifier and a list of data nodes that might
be appropriate locations for the new chunk.

The client is then responsible for transferring the
chunk’s content to a sufficient number of data nodes.
There are various policies a client could use to do
this. For example, the client could directly connect
to all the data nodes and send the chunk content it-
self, or it might only send the data to a single data
node and instruct that node to propagate the data
onward. Once the content of a chunk has been com-
pletely received by a data node and written to disk,
this fact will be reflected in the next heartbeat that
the data node sends to the masters. In turn, this will
make the data node available for subsequent opera-
tions on the chunk.

To read a file, a client once again begins by con-
tacting one of the master nodes to fetch the list of
chunks that make up the target file. For each chunk
identifier in the list, the client consults the master

2In the current prototype, random writes are not supported
and each append operation creates a new chunk — we expect
that each append will be large enough to justify occupying an
entire chunk. We plan to relax this constraint in the future.

to determine the set of data nodes that have copies
of that chunk. The client then reads the chunk by
connecting to one of the data nodes directly.

To delete a file, a client contacts a master node.
The master passes the request through the consen-
sus protocol. When consensus has been reached, all
the masters remove the file from their internal meta-
data. There is no need to eagerly contact data nodes
to remove the chunks that make up the deleted file:
the next time the data node sends a heartbeat to a
master, the master replies with a list of the chunks
on the data node that is has no knowledge of. These
orphaned chunks can be garbage collected at the data
node’s leisure.

Other file system operations are straightforward.
For example, clients interact with master nodes to
obtain directory listings, and create and remove di-
rectories.3

4 System Realization

The file system design described in Section 3 is ab-
stract, and might reasonably be implemented using
a variety of techniques. In this section, we describe
how we realized the BoomFS design using a combina-
tion of Java and Overlog. In the following discussion,
we assume that the reader has some familiarity with
Overlog [13].

We validate our implementation strategy in two
ways: by demonstrating how a declarative specifi-
cation enables easy modification of file system poli-
cies in Section 4.6, and by conducting a performance
study in Section 5.

4.1 Software Architecture

In BoomFS, masters, data nodes, and clients are all
implemented using a combination of Java and Over-
log. We used JOL [3], a Java-based Overlog imple-
mentation that allows an Overlog evaluator to be em-
bedded inside a Java program, and allows Overlog
programs to contain Java objects and invoke Java
methods. Java programs can insert and delete tuples
from Overlog relations, and register callbacks that
are invoked when a particular state is reached by the
Overlog instance.

Each node type in BoomFS is structured in a simi-
lar way. Upon startup, the node runs Java code that

3Our prototype implementation of BoomFS does not cur-
rently support directories, but we expect that this implemen-
tation shortcut will be easy to fix.

4



bootstraps a JOL instance, and installs the Overlog
files for BoomFS.

This architecture is quite similar to the famil-
iar structure of an application that uses a DBMS:
the database is responsible for managing data, and
the application uses queries to retrieve and mod-
ify the state of the database. However, there are
some crucial differences between this architecture and
the design of BoomFS. For example, Overlog rela-
tions are partitioned over multiple nodes. While one-
time queries are expressible in Overlog, continuous
queries are the more common case, represented syn-
tactically as a recursive join and semantically as a
cyclic dataflow graph.

4.2 State Representation

Any file system contains two kinds of state: data and
metadata. In BoomFS, data is stored as a collection
of chunks distributed over the data nodes. Each data
node stores chunks as normal files on its local file
system.

All the metadata in BoomFS is represented as re-
lations; some of these relations are partitioned over
multiple nodes.

4.3 Control Path

In GFS, the control path comprises three separate
protocols: the client protocol spoken between clients
and masters to modify file system metadata, the con-
trol protocol between master and data node used for
replica migration or deletion instructions, and the
heartbeats regularly sent from data nodes to the mas-
ters. The replication mechanism, which in GFS in-
volves a log flush to multiple slave masters, can be
considered a fourth protocol.

In our design, instead of using separate state ma-
chines to implement the various communication pro-
tocols, all control path messaging is specified declar-
atively. Logical inference rules, like database views,
perform select-project-join over locally materialized
relations, and the newly projected tuples are sent
over the network if their location specifier indicates
that they belong in a different partition, and hence
a different node in the system. At the destination,
an incoming tuple’s schema describes its content and
determines which rules, if any, should be reevaluated
with reference to the new data.

For read-only operations like many client protocol
interactions, a single declarative rule on the client (to
transfer the injected request tuple to the master) and

a pair of rules on the master (one to return the results
to the client, and an error handler) suffice to express
the messaging logic. Requests that modify file sys-
tem metadata follow the same structure, but trigger
a more complicated chain of inferences on the mas-
ter. In particular, the master must achieve consen-
sus among master replicas, attempt the modification,
and indicate success to the client only if these steps
succeed. Heartbeats from data nodes to the master
are structured similarly to client requests, but are
triggered by a periodic timer rather than by human
interaction. Finally, control protocol messages from
master to data node are fired when conditions speci-
fied by certain aggregate queries indicate that system
invariants are unmet, as when the number of replicas
drops below the specified replication factor.

Let us take a concrete example beginning with a
client request to append a stream of data to a file.
The Java shell code running at the client injects a
tuple into a local table, triggering a send rule that
causes the tuple, which contains the client’s address,
the file identifier, and an opcode indicating that this
is a request for a new chunk identifier, to the master.
This initiates a chain of inferences that generate a
new id, achieve consensus on the assignment of this
id to the given file’s list of chunks, and select a set
of possible candidate data nodes that may store the
new chunk. The resulting chunk identifier and can-
didate data node list are then embedded in a tuple
and returned to the client. The client applies its lo-
cal policy, which may be a simple distance function,
to sort the set of candidate data nodes and select a
next hop. From here, the data path is invoked for the
remainder of the operation.

4.4 Data Path

The data protocol is a straightforward mechanism
for transferring the content of a chunk between
two hosts. The server side of the protocol is im-
plemented as a simple imperative component that
runs on each data node. It listens on a dedicated
TCP port and handles each client connection us-
ing a separate thread. Data transfer is done us-
ing the FileChannel.transferTo() mechanism pro-
vided by Java NIO, which allows an underlying zero
copy API to perform the bulk data transfer (such as
sendfile(2) on Linux). The data protocol consists
of two simple operations: writing a chunk from the
client to the server, and reading a chunk from the
server to the client. The protocol client is either a
client node or another data node.

5



While the data protocol is unicast, a client node
typically wants to write a new chunk to multiple data
nodes. As noted in Section 3.2, there are several ways
in which this could be accomplished. The current
BoomFS prototype does “source routing”: after ob-
taining a new chunk identifier and list of candidate
data nodes from a master node, the client decides on
the sequence of data nodes to which it wants to write
a new chunk, and then transfers the chunk to the first
node in the sequence. That node then transfers the
chunk to the second node in the sequence, and so on.
While this approach is effective at utilizing network
bandwidth, it is subject to partial failures, and the
current implementation is not pipelined. More im-
portantly, routing decisions of this nature should be
specified in Overlog, not hardcoded in Java. We plan
to rectify this shortcoming in the near future.

4.5 Fault Tolerance

Both BoomFS and GFS are intended to be deployed
on large clusters of commodity machines, in which
“component failures are the norm rather than the
exception” [7]. In this section we explore several
of the failure modes of the system, and discuss how
our integration of a declaratively-specified Paxos im-
plementation addresses shortcomings in the original
GFS and HDFS design.

4.5.1 Data Node Failure

As long as the replication factor of a file is greater
than one, the loss of a single data node will be trans-
parent to applications using the system. The last
heartbeats of the lost node will quickly expire from
the soft-state tables on the masters, and clients will
no longer be directed to this server for read or write
requests. The updated soft state will cause aggre-
gates in the BoomFS logic to be recomputed, which in
turn cause new migration events to be fired, selecting
another replica as a target for the chunks whose repli-
cation factor is now too low. GFS and HDFS both use
this kind of replication strategy, though Ghemawat et
al. discuss the possible use of other forms of redun-
dancy, such as parity [7].

4.5.2 Data Node Disk Failure

The effect of this failure is more or less the same as
for data node failure, assuming that all the file system
data is stored on a single disk. The data node will
continue to send heartbeats to the master, but one of

these will include a delta record describing the loss of
the files on the disk. The same chain of inferences de-
scribed in the lost data node scenario described above
will fire for these chunks. It should be noted that our
current prototype will throw an exception after try-
ing to read from the lost directory, and the data node
service will stop, resulting in identical behavior to the
failed data node scenario.

4.5.3 Data Corruption

GFS and HDFS implement data integrity checking
at different granularities: in HDFS, chunk (called
“blocks” in HDFS) checksums are calculated over the
entire 64 MB chunk, while in GFS, a chunk is subdi-
vided into 64 KB blocks, each of which has an asso-
ciated 32 bit checksum. Our prototype did not im-
plement any integrity checks, but we plan to add this
feature in the near future.

4.5.4 Master Failure

GFS keeps all file system metadata on a single mas-
ter server to which all client requests are directed; the
mapping is maintained through the DNS. Several sec-
ondary masters are run in a log replay mode similar
to the log-shipping approach employed by database
systems: a metadata change is not considered com-
mitted until the log tail has been flushed not only
to stable local storage, but to all secondary masters.
This implies the use of a two-phase commit protocol,
but the implementation is not discussed in detail. If
the primary master fails, the failure must be detected
by an external application, which then remaps the
DNS entry to one of the secondaries.

HDFS supports the concept of a “Secondary Na-
meNode” or backup master that asynchronously ap-
plies log entries to a checkpoint image. The primary
master supports writing log entries to multiple direc-
tories, one of which can be a remote file system such
as NFS. A secondary master can then read the log
from this file system. Presumably, this adds consid-
erable overhead to the performance of the master.

In our prototype, a configurable number of mas-
ters operate in lock-step using the Paxos consensus
protocol, also implemented in the Overlog language.
This means that like GFS, a mutation of file system
metadata in not complete until it is reflected on all
participating masters. Unlike GFS, BoomFS backed
by Paxos is a multimaster system that supports “up-
date anywhere anytime” semantics [8], although for
performance reasons it is preferable to have all clients

6



communicate with a single primary master. Assum-
ing non-byzantine faults, a BoomFS installation with
m masters can survive m/2− 1 failures, as consensus
requires merely simple minority. If the primary fails,
we also incur the cost of a timeout on each client on
the first request to the failed master; after that, the
client’s master list is updated to reflect the loss. No
external monitoring or indirection are necessary to
support this level of fault tolerance.

4.6 Implementation Process

Our task in developing the BoomFS prototype was
to represent the distributed state of the file system
as a single relational database, with relations parti-
tioned across nodes. Both policy (which expresses
constraints over these relations, and conditions un-
der which the contents of the relations may change)
and protocol (which expresses how data may move
from one node to another) can then be expressed in
a network-aware recursive query language that oper-
ates over the relations.

As we built the prototype, we concentrated first on
the correctness of the specification and on exploiting
the economy of mechanism exposed by flattening sys-
tem state. For the imperative components, including
data transfer and source-routing for the data path,
we implemented simple, best-effort modules as place
holders while we built the collection of logical rules
comprising the declarative specification of the sys-
tem. Once this was correct, it was simple to return
to the imperative components and tune them to im-
prove performance, without worrying about violating
the correctness guarantees made by the policy layer.

It was equally straightforward to extend the declar-
ative components of the system. With the global
state flattened, it was easy to return to many initially
deferred optimizations. For example, our initial im-
plementation of the system sent the entire state of
each data node in every heartbeat message. While
this was correct, it is clearly suboptimal as file sys-
tem size increases. Changing the heartbeats to re-
flect only chunk status deltas was a simple matter
of sending the set difference of the local chunk re-
lation and the relation of chunk heartbeat messages
that have been acknowledged by the master. Dele-
tion deltas are simply the same set minus with the
terms reversed. Our initial policy for replica place-
ment was purely distance-based, and had poor dis-
tribution of chunks when a small number of topo-
logically close clients were appending data. Extend-
ing this to a multi-level ordering that considers data

100 ls ops 100 touch ops 100 0k copy ops
0

200

400

600

800

1000

1200

T
im

e
 (

se
c)

Metadata Performance

HDFS
BoomFS

Figure 2: Performance for metadata operations

node chunk load was a simple matter of adding an ag-
gregate query computing chunk count per node, and
performing a second bottom-k computation to select
the lowest loaded nodes that are not more than some
specified distance from the client.

5 Performance Evaluation

To show that our approach to building BoomFS is
competitive with traditional techniques for construct-
ing distributed systems, we compare the performance
of BoomFS and HDFS on two different workloads.
When designing BoomFS, our goal was to achieve
high performance on the large append and read work-
load that GFS-like file systems are designed for, de-
spite the increased control overhead of our Overlog
runtime. In this section, we evaluate how successful
we were at achieving this goal.

We performed our experiments on the Amazon
Elastic Compute Cloud (EC2), a virtualized “util-
ity computing” environment [1]. In Section 5.1, we
compare the cost of metadata operations between our
prototype and HDFS. In the following section, we
simulate a MapReduce sort workload, comparing the
read and write performance of BoomFS and HDFS as
we scale the number of concurrent clients and data
nodes together.

5.1 Metadata Operations

In our first experiment, we compare the latency of
metadata operations affecting the control path. A
directory listing uses the client protocol and requires

7



a round trip between the client and master and a
lookup on the master, as does touching a file on the
file system. Copying a zero-byte file requires two
round trips to the master: one to get a new chunk
identifier for the append operation, and another to
request a set of data nodes who can accept the new
chunk.4 The results of running 100 of each of these
metadata operations are shown in Figure 2. As we
anticipated, the overhead of these operations is signif-
icantly higher in our implementation than in HDFS.
This is partly due to the current performance of the
JOL implementation. Another factor is the presence
of client-side caching, enabled in HDFS and not yet
implemented in BoomFS. However, it would be sim-
ple to locally materialize lookup results into relations
that can be queried before visiting the master.

5.2 Sort Benchmark

Our next experiment evaluates read and write per-
formance under a typical MapReduce workload. The
sort benchmark of Dean and Ghemawat [6] is a simple
and practical test that puts equal stress on the read
and write components of a distributed file system.

The MapReduce specification of sorting is trivial,
largely because sorting (over some key) is a side-effect
of the framework. Thus, the map function simply
returns the sort key and the entire line as the key’s
value, and the reduce function is simply the identity
function. In an execution of the sort, disjoint sections
of a single input file are read in parallel by all of the
mappers, which apply the hash function and write
the bucketed results to their local disks. The reducers
then read these files via RPC calls, apply the built-in
merge sort, and write as many files back to the GFS
as there are reducers.

For this experiment, we are interested only in the
costs associated with the parallel reads at the start of
the workflow described above, and the parallel writes
described at the end. Hence, we dispense with the
actual sorting, hashing and crossbarring, and focus
merely on file system performance as the number of
concurrent clients and data nodes are scaled up to-
gether. For a given concurrency level D, we provision
an EC2 cluster with a master node and D data nodes,
and prime the file system by creating D 100 MB files
with a replication factor of 2. We then spawn D client
processes (one on each data node), which read one of
the files from the file system, write it to local disk,

4Combining these responses into a single message is a simple
optimization not yet implemented in our prototype.

0 2 4 6 8 10 12 14 16
Concurrency Factor

5

6

7

8

9

10

11

12

13

14

T
im

e
 (

se
c)

Read Performance (100MB file size)

HDFS

BoomFS

Figure 3: Read performance for the sort benchmark

0 2 4 6 8 10 12 14 16
Concurrency Factor

0

5

10

15

20

25

30

35

40

T
im

e
 (

se
c)

Write Performance (100MB file size)

HDFS

BoomFS

Figure 4: Write performance for the sort benchmark

then create a new distributed file system file and ap-
pend the contents of the local file to it. Thus, each
client reads (writes) 100 MB to (from) the file system
concurrently in each sort benchmark.

Our results are summarized in Figures 3 and 4. At
lower concurrency levels, BoomFS is comparable in
read performance and handily outperforms HDFS in
write performance. These results support our intu-
ition that the relatively high cost of metadata op-
erations is quickly amortized by the highly efficient
data path under the large transfers characteristic of
MapReduce workloads.

In HDFS, read latency increases gradually as load
increases, but write latency reacts very quickly to
concurrency, increasing by almost two times as we in-
crease the number of clients from 1 to 4. Beyond that

8



point, HDFS gracefully handles increasing load with
low variance. BoomFS shows similar read results,
but significantly lower write latency. We believe that
BoomFS’s superior write performance is due partly
to implementation shortcuts (e.g. BoomFS performs
no checksumming), and partly to the efficiency of the
data path implementation.

At 16 concurrent clients, BoomFS began highly
variable performance. The variance for x = 16 in
Figure 4 reflects the fact that 4 of the 48 operations
took longer than 60 seconds, triggering a timeout.
If we omit those 4 operations, the mean write re-
sponse time was 10.12 seconds, which is consistent
with BoomFS performance at lower concurrency lev-
els. Although we have not yet isolated the cause of
this performance variability, its relatively rare occur-
rence suggests it is more likely a bug than a systemic
or fundamental issue.

6 Future Work

The current version of the BoomFS prototype con-
firms that the BOOM architectural style can be suc-
cessfully applied to the construction of a distributed
file system. However, we feel that the most exciting
research on this topic remains to be done.

We believe that interesting issues in computer sys-
tem design often only arise when technology is de-
ployed in production environments. Therefore, we
plan to complete the implementation of BoomFS
and deliver a production-quality file system. This
requires implementing support for directories, fine-
grained concurrent appends, and persistent meta-
data. We also want to ensure that BoomFS is able
to scale to petabyte-range data sets and thousands of
nodes. We plan to validate BoomFS’s usability and
performance by implementing the HDFS API, and
then using BoomFS to replace HDFS in real-world
Hadoop installations.

We also plan to leverage the flexibility allowed by
BoomFS’s declarative specification to explore new file
system features and policies. We closely followed the
GFS design primarily to demonstrate that a faithful
reimplementation is possible using declarative tech-
niques, but we plan to consider a much broader space
of design alternatives in the future. For example, it
should be possible to partition the file system meta-
data over the master nodes, removing a major scala-
bility barrier.

Finally, we plan to explore the cross-layer opti-
mizations that are enabled when multiple elements of

the software stack are implemented using the same
declarative techniques. For example, colleagues are
completing an implementation of the Hadoop job
scheduler in Overlog. By running this on top of
BoomFS, it would be possible for an optimizer to
make intelligent costing decisions for file system op-
erations that automatically reflect the characteristics
of the current Hadoop workload.

7 Related Work

To our knowledge, this work represents the first
attempt to specify a distributed file system using
declarative techniques. However, it can be argued
that GFS and related designs (including BoomFS)
are “file systems” only in a loose sense, because
they do not implement POSIX semantics and pro-
vide looser consistency guarantees than traditional
file systems. In this sense, BoomFS is clearly related
to prior work on declarative specifications of storage
infrastructure, such as DHTs [14] and data replica-
tion systems [4].

Recent work on a declarative file system integrity
checker [9] provides another example of how sophisti-
cated policies and invariants can be concisely stated
in an appropriate high-level declarative language.
Similar tools for distributed consistency checking,
garbage collection, monitoring, and periodic opti-
mization should be easy to write on top of BoomFS,
because all file system metadata is already available
for declarative queries. We plan to explore this topic
in the future.

Both BoomFS and GFS emphasize the distinction
between control and data paths. This division has a
long history in computer science, and can be found
in protocols ranging from FTP [16] and DOT [17], to
file systems like Berkeley FFS [15] and ext3.5 Sim-
ilarly, the separation of control and data is a well-
established principle in computer system design [12].

8 Conclusion

We have implemented BoomFS, a distributed file
system that is similar to GFS and HDFS. BoomFS
achieves competitive performance with HDFS. Un-
like HDFS, BoomFS avoids a single point of failure

5In these file systems, metadata and data are subject to
different consistency requirements and durability guarantees,
and are implemented using different on-disk data structures.

9



through its support for multiple master nodes and
automatic failover.

More importantly, BoomFS is implemented using
the BOOM architectural style: the complex protocols
and policy of the control path are specified in declar-
ative logic, while the simple, high-performance data
path is written in Java. BoomFS was straightforward
to implement. Because the implementation is concise
and comprehensible, the file system is easy to modify
and adapt to new environments. BoomFS is the first
of several pieces of data center infrastructure we plan
to implement using declarative techniques as part of
the BOOM project.

References

[1] Amazon Elastic Compute Cloud. http://aws.
amazon.com/ec2.

[2] HDFS architecture. http://hadoop.apache.
org/core/docs/current/hdfs_design.html.

[3] Java Overlog Library (JOL). https://svn.
declarativity.net/lincoln/java.

[4] N. Belaramani, M. Dahlin, A. Nayate, and
J. Zheng. PADRE: A Policy Architecture
for building Data REplication Systems.
http://www.cs.utexas.edu/users/dahlin/
papers/padre-may-2008-extended.pdf, May
2008.

[5] T. D. Chandra, R. Griesemer, and J. Redstone.
Paxos made live: an engineering perspective. In
Proceedings of the 26th Annual ACM Symposium
on Principles of Distributed Computing, pages
398–407, 2007.

[6] J. Dean and S. Ghemawat. MapReduce: Sim-
plified data processing on large clusters. In Pro-
ceedings of the Sixth Symposium on Operating
System Design and Implementation, pages 137–
150, 2004.

[7] S. Ghemawat, H. Gobioff, and S.-T. Leung. The
Google file system. In Proceedings of the 19th
ACM Symposium on Operating System Princi-
ples, pages 29–43, 2003.

[8] J. Gray, P. Helland, and D. Shasha. The dan-
gers of replication and a solution. In Proceedings
of the 1996 ACM SIGMOD International Con-
ference on Management of Data, pages 173–182,
1996.

[9] H. S. Gunawi, A. Rajimwale, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau. SQCK: A
declarative file system checker. In Proceedings of
the Tenth Symposium on Operating System De-
sign and Implementation, 2008.

[10] J. M. Hellerstein. Toward network data indepen-
dence. SIGMOD Record, 32(3):34–40, 2003.

[11] L. Lamport. Paxos made simple. ACM SIGACT
News, 32(4):18–25, December 2001.

[12] R. Levin, E. Cohen, W. Corwin, F. Pollack, and
W. Wulf. Policy/mechanism separation in hy-
dra. In Proceedings of the Fifth ACM Symposium
on Operating Systems Principles, pages 132–140,
1975.

[13] B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay,
J. M. Hellerstein, P. Maniatis, R. Ramakrish-
nan, T. Roscoe, and I. Stoica. Declarative net-
working: language, execution and optimization.
In Proceedings of the 2006 ACM SIGMOD In-
ternational Conference on Management of Data,
pages 97–108, 2006.

[14] B. T. Loo, T. Condie, J. M. Hellerstein, P. Ma-
niatis, T. Roscoe, and I. Stoica. Implementing
declarative overlays. In Proceedings of the 20th
ACM Symposium on Operating Systems Princi-
ples, volume 39, pages 75–90, 2005.

[15] M. K. McKusick, W. N. Joy, S. J. Leffler, and
R. S. Fabry. A fast file system for UNIX. ACM
Transactions on Computer Systems, 2(3):181–
197, 1984.

[16] J. Postel and J. Reynolds. RFC 959: File
transfer protocol. http://www.ietf.org/rfc/
rfc959.txt, 1985.

[17] N. Tolia, M. Kaminsky, D. G. Andersen, and
S. Patil. An architecture for Internet data trans-
fer. In Proceedings of the 3rd Symposium on
Networked Systems Design and Implementation
(NSDI), May 2006.

[18] M. Zaharia, A. Konwinski, A. D. Joseph,
R. Katz, and I. Stoica. Improving MapReduce
performance in heterogeneous environments. In
Proceedings of the Tenth Symposium on Operat-
ing System Design and Implementation, 2008.

10


