

CIDR Perspectives 2009

Continuous Analytics: Rethinking Query Processing in a

Network-Effect World

Michael J. Franklin, Sailesh Krishnamurthy, Neil Conway, Alan Li, Alex Russakovsky, Neil Thombre
Truviso, Inc.

1065 E. Hillsdale Blvd, Suite #230, Foster City, CA 94404

www.truviso.com

ABSTRACT
Modern data analysis applications driven by the Network Effect

are pushing traditional database and data warehousing

technologies beyond their limits due to their massively increasing

data volumes and demands for low latency. To address this

problem, we advocate an integrated query processing approach

that runs SQL continuously and incrementally over data before

that data is stored in the database. Continuous Analytics

technology is seamlessly integrated into a full-function database

system, creating a powerful and flexible system that can run SQL

over tables, streams, and combinations of the two. A continuous

analytics system can run many orders of magnitude more

efficiently than traditional store-first-query-later technologies. In

this paper, we describe the Continuous Analytics approach and

outline some of the key technical arguments behind it.

1. INTRODUCTION
Modern network- and web-based applications are pushing

traditional database and data warehousing technologies beyond

their limits [2]. At the heart of the problem are two

complementary workload characteristics that have combined to

challenge the accepted store-first-query-later approach employed

by traditional and even alternative database architectures such as

column stores and data warehouse appliances: massive data

growth and increasing demand for lower latency.

1.1 Network Effect #1: More Data
Companies across all industries are seeing very steep increases in

the amount of data they must process. For example, one recent

study [13] has estimated that the amount of data stored in data

warehouses has been growing by an average of 173% per year

across all industries. This rate of growth is substantially faster

than the typical 12 to 18-month doubling of hardware capacity as

dictated by Moore’s law, Shuggart’s law and others. As a result,

for data analytics workloads hardware continues to become slower

relative to the demands being placed on it.

As severe as this problem is in traditional businesses, however,

the problem is even more acute for companies in network-centric

businesses such as social networks, advertising networks, content

delivery, e-commerce, on-line gaming, and security. Many

companies in these industries are facing (or at least, planning for)

data volume growth of as much as 10x per year. In such

environments, “peak” load one year quickly becomes “normal”

load the next, and this process continues. These increases are

driven by viral network-effects that lead to hyper-growth of user

bases and by the competition-driven need to add new features

coupled with application development advancements that enable

the rapid deployment of such features.

With existing data analysis approaches, sustaining even a couple

years of massive compounded growth, if even possible, would

require an investment in hardware, management, and electrical

power, (or the equivalent in payments to cloud resource

providers) that would be far beyond the means of all but the very

largest of enterprises.

1.2 Network Effect #2: Less Time
Exacerbating the data growth problem is a continual downward

pressure on latency for analytics. Network-centric businesses

must react quickly to changes in their environments and

workloads and to the demands of their users. For on-line

businesses, understanding what a user is doing while they are still

interacting with the site provides the opportunity to improve user

experience as well as to more accurately target advertising and

offers. Furthermore, across many industries, sophisticated data

analytics are increasingly a core source of competitive advantage.

Surprisingly, despite their interactive nature, most “modern” web-

based companies face analytics latencies similar to those of older

industries – even though they are not burdened by legacy IT

infrastructure. In most cases, next-day reporting and analysis is

still considered to be state-of-the-art. This state of affairs

frustrates business managers at these companies, while the IT

managers fret over how to maintain even such a loose latency

requirement in the face of massive data growth.

1.3 Problem: A Decades-Old Legacy
For many environments, it has become increasingly apparent that

the data warehouse is a bottleneck in the analytics pipeline (see

for example, [11]). It is our belief that this problem is not simply

a matter of tweaking existing data warehousing products. Rather,

it is an inherent by-product of the traditional store-first-query-

later nature of data management and database architecture. That

is, batch-oriented processing, in which data is first collected, then

cleaned, then distributed and/or stored, then retrieved, then

analyzed, is just fundamentally too inefficient to handle the

analytics challenges faced by modern network-centric businesses.

This article is published under a Creative Commons License Agreement

(http://creativecommons.org/licenses/by/3.0/).

You may copy, distribute, display, and perform the work, make derivative

works and make commercial use of the work, but you must attribute the

work to the author and CIDR 2009.

4th Biennial Conference on Innovative Data Systems Research (CIDR)

January 4-7, 2009, Asilomar, California, USA.

CIDR Perspectives 2009

 2

While traditional DBMS architecture is obviously challenged in

such environments we note that even new “disruptive” approaches

like Hadoop and Map/Reduce are also based on a batch paradigm.

Thus, they too suffer from inherent inefficiencies that render them

exceedingly costly and slow for many common analytics tasks.

1.4 Workload Characteristics
Fortunately, modern analytics workloads have key attributes that

can be exploited to solve the dual Network Effect problems of too

much data and not enough time.

First of all, these analytics applications tend to be “additive” in

nature. That is, rather than consisting of transactional updates to

an existing set of data, these applications absorb constantly

arriving streams of data, with new analytics applied primarily to

the newly arriving data. For example, an on-line business may

wish to monitor site usage, referral or buying behavior, content

interaction, etc. as people use the site. As in most analytics

workloads, the time attribute plays a central role in the analysis.

Metrics of interest are computed on the current data over different

time-scales and reported as is or perhaps compared to the same

metrics over time periods in the past.

Secondly, as is typical of analytics and reporting workloads, in

these applications the vast majority of queries and metrics of

interest are known ahead of time. That is, the Key Performance

Indicators that are needed by the business users are typically well

known for a given organization, and new metrics are added only

occasionally. While as in any analytics environment, a small

number of power users will perform ad hoc data mining types of

analysis, the majority of the analytics processing is done on the

core metrics. When data mining detects a new phenomenon of

interest, that insight typically identifies new metrics to be

monitored from then on. Furthermore, such ad hoc analysis can

often be done much more efficiently on previously computed

metrics rather than on the raw data that has been archived away in

the database or file system.

We argue that these dual characteristics of additive, time-oriented

data and known queries provide an opportunity for solving the

widening scalability gap for database technology. We propose

the seamless integration of stream-oriented Continuous Analytics

into the data management platform as the solution. We call such

an integrated solution a “stream-relational” database system.

2. STREAM-RELATIONAL SYSTEMS
In this section we describe the basic idea of a Continuous

Analytics system based on Stream-Relational principles.

2.1 Optimizing for the Common Case
A standard principle of systems design is to optimize for the

common case. That is, a system should be designed to be most

efficient for the situations that are expected to arise the majority of

the time. Unfortunately, the approach underlying modern

Relational query processing systems is optimized for a case that is

certainly no longer the common one for analytics systems today, if

in fact, it ever was. Namely, the existing store-first-query-later

approach is aimed for situations in which a large database that is

randomly updated by transactions is manipulated by a query

workload that is at best unpredictable in its timing, if not perhaps,

purely ad hoc.

In contrast, as discussed in the previous section, the common case

for analytics in network-centric scenarios has neither of these

attributes. That is, the workloads are additive (i.e., append-

mostly) and the queries and their scheduling are largely known in

advance.

Stream Query Processing has been designed for workloads of

additive, time-oriented processing where queries and metrics of

interest are known ahead of time. As such, it provides a perfect

technology for addressing the crisis in analytics being caused by

the Network Effect. That is, by embedding a high-performance

stream query processor into a full SQL-based relational DBMS, a

unified stream-relational system can be created that is capable of

processing even batch-oriented analytics and reporting workloads

many orders of magnitude faster than alternative approaches.

This degree of scalability improvement is what is required to

address the dual problems of massive data volume growth and

demands for low latency of network-centric applications.

Continuous Analytics, then, can be viewed as a rethinking of

Relational DBMS query processing for this new “common case”.

If one were to develop a system optimized for running predefined,

time-oriented (or sequence-oriented) analytics over continuously

arriving streams of records, a store-first-query-later approach does

not make sense. Likewise, a pure streaming approach in which

data is passed through the system once and answers are spewed

out in real-time [7] is not adequate for a reporting-oriented

analytics workload, as the on-line use of historical data is crucial

to such applications.

2.2 Why an Integrated Solution?
The argument for using stream query processing to address the

Network Effect problem is straightforward. Stream processing

systems execute queries incrementally over data “on-the-fly”.

This approach leads to huge efficiency benefits by processing

queries over data without first having to store that data, and by

processing multiple continuous queries in a shared manner. We

refer to this continuous, incremental processing as “Jellybean

Processing”: Rather than first filling up the jellybean jar only to

later pick through the jar to calculate metrics about the contents

(e.g., how many beans there are of a particular flavor), it is

hugely more efficient to simply calculate all those metrics

simultaneously as the beans are being put in the jar. Such

processing avoids the costs of reading and writing to/from disk,

moving data repeatedly through the memory and cache hierarchy,

starting up and tearing down query state, etc. and enables

redundant work to be avoided across the set of active queries

[4,12].

The argument for not using just a standalone stream query system

is also straightforward. Stream query systems are typically

designed solely for real-time applications involving monitoring,

alerting, and/or event detection. These systems often have query

languages that beyond superficial similarities differ sharply in

semantics and capabilities from standard SQL. Their use

typically requires business processes that are structured

specifically for monitoring and utilizing real-time data.

Unfortunately, most existing business applications are not yet able

CIDR Perspectives 2009

 3

to cope with real-time data, and for many applications, real-time

data simply is inappropriate. Existing analytics and reporting

applications have been built assuming a standard database

interface in which SQL queries are submitted to the system and

answers are delivered according to the reporting policies and

schedule of the given use case.

2.3 Realizing an Integrated Approach
At the heart of the Continuous Analytics approach is a seamless

merger of streaming and traditional Relational query processing.

From a language point of view, this merger is surprisingly easy to

do. The key is to begin with the philosophy of making minimal

extensions to the existing SQL approach while not losing any of

its well-understood functionality or behaviors. With thought, even

concepts such as transactional consistency can be extended to

continuous processing. The result of this approach is a system

that is inherently familiar to experienced database developers and

DBAs and that fits nicely into existing applications while

providing dramatic performance and scalability improvements.

From a technology point of view, the merger is more involved.

The key concept here is that streaming data and stored data are not

intrinsically different. Rather, stored data is simply streaming

data that has been entered into persistent structures such as tables

and indexes. Starting from this core principle, it becomes

possible to construct a system that processes queries over streams

and tables in a way that does not require database users to

overhaul their thinking or database administrators to learn a

completely new set of concepts in order to leverage the

performance and scalability benefits of this new technology.

And as a side benefit – a Continuous Analytics system can

provide “real-time” processing for those applications that are

equipped to take advantage of it.

3. DESIGN CONSIDERATIONS
In this section,, we provide a brief overview of our Stream-

Relational extension of SQL and outline some of the

implementation benefits that result from this approach.

3.1 Query Langauge Overview
Much of the early research on stream processing systems was

ambiguous about the relationship between stream and relational

query processing. In fact, some early systems did not support a

query language at all [1] or introduced imperative syntax such as

“for loops” [5]. In contrast, the STREAM project [2] introduced

the Continuous Query Language (CQL), which explicitly defined

this relationship. CQL was based on formal relational languages

and used the explicit relationship between relations and streams

primarily as a way to provide clear and consistent semantics for

streaming queries. In our language, called TruSQL, we have

taken this approach further, by actually integrating stream

processing fully into SQL, including persistence. In other words,

TruSQL is a superset of SQL.

We add the notion of streams to the standard relational model. A

stream is an ordered unbounded relation. For instance, the

following DDL example shows the definition of url_stream, a

stream that is ordered on an attribute called atime where each

record represents a URL and the IP-address of the client machine

that accessed that URL at that time.

CREATE STREAM url_stream

(url varchar(1024),

 atime timestamp CQTIME USER,

 client_ip varchar(50),

);

Example 1 - DDL For Creating a Stream

In TruSQL, queries can be posed exclusively on relations,

exclusively on streams, or on a combination of streams and

relations. In the first case, a query produces a relation as an output

and has the exact same semantics as in SQL. We refer to queries

over relations as snapshot queries (SQ) because they operate on a

snapshot of the relations at a given time. In the other cases,

however, a query produces a stream as an output. Since a stream

is unbounded, a query that produces a stream never ends and is

therefore called a continuous query (CQ). SQ’s produce an

answer and terminate (i.e., they are regular relational queries)

while CQ’s produce answers incrementally and run until they are

explicitly terminated.

Because streams are unbounded, when a stream is used in a SQL

query, the system must be told how and when to consider the data

in the stream. This is done using a window clause. The window

clause effectively creates a sequence of relations from the stream,

and the SQL query is applied to each of these relations. This is

known as “RSTREAM” semantics in CQL [2].

Figure 1 – Windows Produce a Sequence of Tables

In TruSQL there are several different types of window clauses,

but a typical window clause specifies the width of the window and

how often it is moved forward. These can be specified using time,

row counts or combinations of the two. For example, the query

below is a CQ over the url_stream that each minute (specified by

“ADVANCE”) produces the top ten urls visited over the previous

five minutes (specified by “VISIBLE”). Note that the only

extension to the SQL syntax here is the window clause for the

stream.

SELECT url, count(*) url_count

FROM url_stream <VISIBLE '5 minutes'

 ADVANCE '1 minute'>

GROUP by url

ORDER by url_count desc

LIMIT 10

Example 2 - A Simple Continuous Query (CQ)

STREAMS TABLES Window operators

…

CIDR Perspectives 2009

 4

The result of a stream-only or mixed (i.e., streams joined with

relations) query in TruSQL is a stream formed by concatenating

the sequence of relations produced by repeated execution of the

query. Of course, as in a traditional database system, data

independence allows for efficient implementations of these

semantics under the covers.

3.2 Composition: Derived streams and Views
An important benefit of building on SQL is the ability to leverage

the query composition features of the language. TruSQL

supports two approaches for composing CQs: Streaming Views

and Derived Streams. A Streaming View is simply a SQL view

defined using a CREATE VIEW statement with a query that

includes one or more streams. A Derived Stream is a stream

object defined by a CREATE STREAM AS statement.

As with relational views, a query that defines a Streaming View is

only instantiated when the view is itself used in another query. In

contrast, a query that defines a Derived Stream runs in an “always

on” mode until it is explicitly dropped. For example, consider the

DDL statement below:

CREATE STREAM urls_now as

SELECT url, count(*) as scnt, cq_close(*)

FROM url_stream <VISIBLE '5 minutes'

 ADVANCE '1 minute'>

GROUP by url;

Example 3 – Creating a Derived Stream

This statement creates a derived stream called urls_now that

continuously computes a streaming query. It returns, each minute,

the number of appearances of each URL in the url_stream

over the previous five minutes. 1

Note that the results produced by urls_now are always available

within at most one minute. A derived stream is, therefore,

particularly useful for clients that operate in a disconnected

fashion since the results of a CQ are available upon the first

window close after a client re-connects to the system. Also note,

however, that the urls_now stream, as defined in this example

is not archived. That is, as specified, its results are simply

discarded if there is no active CQ using the stream. We show

how to create an archived Derived Stream next.

3.3 Active Tables: Persistence Meets Streams
Another important advantage of the approach of incorporating

SQL is that it becomes simple to provide persistence to streams

using standard SQL tables. Such tables are truly full-fledged SQL

tables, and can be used in the same ways that any SQL table can

be used. For example, consider the following DDL statements:

1 The “cq_close(*)” function returns the timestamp at the close of

the relevant window.

CREATE TABLE urls_archive

(url varchar(1024),

 scnt integer,

 stime timestamp);

CREATE CHANNEL urls_channel

FROM urls_now

INTO urls_archive APPEND;

Example 4 - Persistence for Streams: Tables and Channels

The first statement is a standard SQL CREATE TABLE statement

that creates a table called urls_archive. The second

statement is an extended DDL statement that creates a special

Channel object called urls_channel that is responsible for

storing the Derived Stream urls_now into the urls_archive

table. Note that in this case, “append” semantics are being used

so that new results are simply added to the table. Another option

is “replace”, in which each new result from the stream overwrites

the previous result. Since urls_archive is kept continuously

updated, we call it an Active Table.

The table urls_archive is a SQL table that can be used as any

other table in a SQL query. For example, it can be queried as part

of a report generation process. The advantage over the traditional

approach of running the report on the raw data only after it has

been stored, of course, is that the reporting query will run

extremely fast, as the computation has already been done. And

because Active Tables are simply SQL tables, indexes can be

defined over them to further improve query performance. Thus,

the combination of Derived Streams with Active Tables can be

viewed as an extremely efficient materialized view mechanism;

One that leverages modern, shared stream query processing to

explicitly address the requirements of additive analytics in

Network Effect environments.

Active Tables are also the key for enabling continuous queries

that compare current metrics with past metrics. Such a query is

written simply as a join between the stream and the active table:

select c.scnt, h.scnt, c.stime

from (select sum(cnt) as scnt,

 cq_close(*) as stime

 from urls_now <slices 1 windows>) c,

 urls_archive h

where c.stime –‘1 week’::interval = h.stime

Example 5 - Stream-Table Join for Historical Comparisons

The above discussion covers only a small portion of the TruSQL

language, but it demonstrates the ease with which stream query

processing and traditional relational query processing concepts

can be combined at the language level and identifies some of the

important benefits of doing so. While other stream processing

approaches have embraced SQL to varying degrees, we believe

that beyond simply adopting some of the SQL syntax, there are

tremendous advantages to be had by carefully integrating stream

CIDR Perspectives 2009

 5

and traditional SQL functionality. This seamless Stream-

Relational integration is the key to the Continuous Analytics

approach.

4. IMPLEMENTATION ADVANTAGES
A unified stream-relational language that minimally extends SQL

provides obvious benefits to database administrators and

application developers who are already proficient at using SQL

database systems to solve their analytics and reporting problems.

The minimalist approach, however, has important benefits in

terms of systems implementation as well. These benefits stem

from the fact that existing concepts and techniques for query

processing, transactional semantics, high-availability and such can

be extended to work in the continuous analytics setting. Perhaps

of equal importance, however, is that by unifying streaming data

with relational data it becomes possible to leverage large portions

of existing DBMS code to build such a system, thereby avoiding

the reinvention and redevelopment of functionality that often

takes a decade or more to get right. For example, the CQ query

plans in many cases are able to reuse the existing implementations

of standard, well understood, iterator-style relational query

operators (e.g., filters, joins, aggregates, sort).

Another important area of reuse is in the transactional and

recovery subsystems. Since a CQ essentially runs as a long-

running transaction, and can involve tables as well as streams, a

major semantic issue that needs to be addressed is the visibility

rules with respect to updates of tables. The isolation mechanisms

of some RDBMSs, such as multi-version concurrency control can

be extended to provide continuous isolation semantics that are

meaningful in a streaming environment. For example, a notion of

window consistency that ensures that updates to tables are visible

only on window boundaries [6].

Likewise, recovery is a key problem that needs to be solved in any

system that is intended for use in a mission-critical fashion.

Unlike a traditional RDBMSs, that only guarantees the integrity

of durable state (all in-flight transactions are deemed aborted on

failure), a Stream-Relational system needs to recover runtime state

as well as durable state. In a single-node implementation, this

runtime state must be rebuilt from data persisted on-disk. While a

common approach for this kind of state recovery is to periodically

checkpoint the internal state of the various CQ operators, such an

approach is hard to implement correctly and requires every

operator to be “taught” how to recover its state. Using the concept

of Active Tables, it is possible to instead implement a strategy that

rebuilds runtime state from disk automatically. Such an

opportunity is yet another example of the implementation benefits

to be gained by carefully following an approach of integrated

Stream-Relational processing.

Continuous Analytics can be used anywhere existing SQL-based

processing is used for reporting and analytics. As such, the range

of use cases spans the breadth of existing data warehouse and

business intelligence applications as well as new applications

where such techniques have been deemed inappropriate due to

their high cost and high latency.

The benefits of the approach can be huge. For example, in one

scenario for a network security reporting application, a batch-

oriented query taking over 20 minutes using a database system

(which was one of a suite of dozens of queries that needed to be

run several times a day), was produced in milliseconds (yes, this is

a 5 orders of magnitude speed up!) by simply running the query

continuously and incrementally as the data arrived, and storing the

results in an Active Table for later retrieval. The effort involved

in converting this static query to a “jellybean” query was

measured in minutes, and the overall architecture of the solution

remained unchanged – a standard database was simply replaced

by a SQL-compliant Stream-Relational database system.

5. RELATED WORK
Continuous Analytics is a technique for addressing the analytics

and reporting demands of modern network-centric enterprises. It

is an extension of traditional database approaches to analytics, and

as such, there is much related work both in terms of techniques

that can be incorporated and in terms of alternative approaches.

Continuous Analytics clearly derives from the intense activity in

stream processing that has been an important thrust of the

database research community in recent years. In particular,

academic prototypes such as Aurora, Nile, Stream, and

TelegraphCQ [1, 5, 3, 9] examined many aspects of stream query

processing, and developed key concepts for efficient query

processing. The focus of these research efforts was largely on

“real-time” applications such as large-scale sensor networks,

financial trading, and telecom. Numerous companies and open

source efforts have followed the initial research, and by and large,

these efforts have focused on the same set of problems.

A key difference between this earlier work and our approach,

however, is that the earlier systems all treated stream processing

as distinct from traditional relational (i.e., persistent) query

processing. We believe that this narrow scope has been a key

inhibitor to the more mainstream adoption of stream processing

techniques in many areas. Furthermore, by separating the stream

world from the table world, huge opportunities to leverage

existing skill sets, tool sets, IT infrastructure, and code are lost.

The Stream-Relational approach we advocate here is aimed at

reclaiming these benefits while providing the necessary

performance for the massive data analytics problem being faced

by network-centric enterprises.

Another important related technology is that of materialized views

(MVs) [14]. MVs were developed precisely to address the

inherent inefficiencies of store-first-query-later database

technology for query-heavy, non-ad hoc workloads observed in

many analytics applications. MVs, however, are not optimized

for such workloads. They still require storing the data, are not

optimized for high data arrival rates, they do not exploit shared

processing for the full SQL language, and they do not fully

exploit the time-oriented semantics of the data and queries in

modern analytics workloads.

This latter limitation is fundamental. MVs are refreshed in batch

mode and therefore may be out of date at the time of the query.

There are limited means to tell the system when to update; mostly

on a timer or upon transaction completion. And when the update

CIDR Perspectives 2009

 6

starts, the whole batch is processed. Even if the DBMS is clever

enough to process the changes incrementally, disk operations,

trigger mechanisms and transaction management take significant

time even before processing has started.

By contrast, the Continuous Analytics approach calls for

processing the data as it arrives utilizing the available CPU cycles,

so by the end of the appropriate time window the answer is ready.

Streaming windows offer more control over update scheduling.

Since the system knows that the query is evaluated continuously,

there is no need to reissue the query. But the most important

difference is that stream processing takes advantage of the fact

that incoming data is ordered without the need to create and

maintain on-disk indices.

In some sense, Continuous Analytics can be viewed as a next

generation MV mechanism exploiting the full power of stream

query processing technology and the full power of a traditional

RDBMS to address the scalability demands of Network Effect

applications.

Finally, many organizations are using or experimenting with data

parallel processing technology such as map/reduce or Hadoop [8].

Such technologies are effective at bringing massive amounts of

processing to bear on data crunching problems, but are inherently

batch-oriented and are much more resource intensive than the

Jellybean processing that a stream-relational system can provide.

They also have low-level interfaces that can make application

development and maintenance difficult.

Recent systems such as Hive [9] are addressing the interface

language issue by putting SQL interfaces on top of such libraries.

Such projects, as well as the increasing number of SQL-based

parallel database and data warehousing products raise the

possibility for closer integration between Continuous Analytics

systems and more batch-oriented approaches. A key to such

integration, however is how faithfully each of the systems

conforms to the SQL interface.

6. CONCLUSIONS

Modern network- and web-based applications driven by the

Network Effect are pushing traditional database and data

warehousing technologies beyond their limits due to their

massively increasing data volumes and demands for low latency.

To address this problem, we advocate an integrated query

processing approach that runs SQL continuously and

incrementally over data *before* that data is stored in the

database. This Continuous Analytics technology is seamlessly

integrated into a full-function database system, creating a

powerful and flexible system that can run SQL over tables,

streams, and combinations of the two.

A continuous analytics system can run many orders of magnitude

more efficiently than traditional store-first-query-later

technologies. Because of their Stream-Relational nature, such

systems can efficiently support a range of workloads from batch-

reporting to “real-time” monitoring. They can also support

workloads that need to combine streaming and table-based data,

both for enriching fact data with table-based dimension data and

for comparing current metrics with historical ones.

Perhaps most importantly, because they do not break the existing

interface models for data analytics, Continuous Analytics systems

built using a Stream-Relational approach can be easily integrated

into existing IT environments while providing the extreme

scalability and performance demanded by modern data-intensive

applications. As such, the approach represents a long-needed

rethinking of query processing in light of the new “common case”

for data analytics.

REFERENCES

[1] Abadi, D., Carney, D., Cetintemel, U., Cherniack, M.,

Convey, C., Lee, S., Stonebraker, M., Tatbul, N., Zdonik, S.

Aurora: A New Model and Architecture for Data Stream

Management. In VLDB J (12)2: 120-139, August 2003.

[2] Agrawal, R., et al. “The Claremont Report on Database

Research”, http://db.cs.berkeley.edu/claremont/, May 2008.

[3] Arasu, A., Babu, S., Widom, J. The CQL Continuous Query

Language: Semantic Foundations and Query Execution.

VLDB Journal, (15)2, June 2006.

[4] Arasu, A., Widom, J. Resource Sharing in Continuous

Sliding-Window Aggregates. Proceedings of VLDB 2004.

[5] Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin

M., Hellerstein, J., Hong, W., Krishnamurthy, S., Madden,

S., Raman, V., Reiss, F., Shah, M. TelegraphCQ: Continuous

Dataflow Processing for an Uncertain World. Proceedings of

CIDR 2003.

[6] Conway, N. Transactions and Data Stream Processing.

http://neilconway.org/docs/thesis.pdf, April 2008.

[7] Garofalakis, M., Gerhke, J., Rastogi, R., “Tutorial: Querying

and Mining Data Streams, You only get one look”, Proc.

ACM SIGMOD 2002.

[8] Hadoop Web Page, http://hadoop.apache.org/core/, 2008

[9] Hive Web page, http://hadoop.apache.org/hive/, 2008

[10] M. A. Hammad, M. F. Mokbel, M. H. Ali, W. G. Aref, A. C.

Catlin, A. K. Elmagarmid, M. Eltabakh , M. G. Elfeky, T.

M. Ghanem, R. Gwadera, I. F. Ilyas, M. Marzouk, X. Xiong,

“Nile: A Query Processing Engine for Data Streams”, Proc.

ICDE Conf., 2004.

[11] Kobielus, J, “"Really Urgent Analytics: The Sweet Spot for

Real-Time Data Warehousing," Forrester Research Report,

August, 2008.

[12] Krishnamurthy, S., Wu, C., Franklin, M. On-the-fly sharing

for streamed aggregation. Proceedings of SIGMOD 2006.

[13] Winter, R, “Why Are Data Warehouses Growing So Fast?”,

B-eye Network, http://www.b-eye-network.com/view/7188,

April 2008.

[14] Widom, J., ed., Special issue on Materialized Views and

Data Warehousing, Data Eng. Bull., June 1995.

