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ABSTRACT 
Modern data analysis applications driven by the Network Effect 

are pushing traditional database and data warehousing 

technologies beyond their limits due to their massively increasing 

data volumes and demands for low latency.  To address this 

problem, we advocate an integrated query processing approach 

that runs SQL continuously and incrementally over data before 

that data is stored in the database.  Continuous Analytics 

technology is seamlessly integrated into a full-function database 

system, creating a powerful and flexible system that can run SQL 

over tables, streams, and combinations of the two.  A continuous 

analytics system can run many orders of magnitude more 

efficiently than traditional store-first-query-later technologies.  In 

this paper, we describe the Continuous Analytics approach and 

outline some of  the key technical  arguments behind it.  

1. INTRODUCTION  
Modern network- and web-based applications are pushing 

traditional database and data warehousing technologies beyond 

their limits [2].   At the heart of the problem are two 

complementary workload characteristics that have combined to 

challenge the accepted store-first-query-later approach employed 

by traditional and even alternative database architectures such as 

column stores and data warehouse appliances: massive data 

growth and increasing demand for lower latency.  

1.1 Network Effect #1: More Data 
Companies across all industries are seeing very steep increases in 

the amount of data they must process.   For example, one recent 

study [13] has estimated that the amount of data stored in data 

warehouses has been growing by an average of 173% per year 

across all industries.   This rate of growth is substantially faster 

than the typical 12 to 18-month doubling of hardware capacity as 

dictated by Moore’s law, Shuggart’s law and others.   As a result, 

for data analytics workloads hardware continues to become slower 

relative to the demands being placed on it. 

As severe as this problem is in traditional businesses, however, 

the problem is even more acute for companies in network-centric 

businesses such as social networks, advertising networks, content 

delivery, e-commerce, on-line gaming, and security.   Many 

companies in these industries are facing (or at least, planning for) 

data volume growth of as much as 10x per year. In such 

environments, “peak” load one year quickly becomes “normal” 

load the next, and this process continues.  These increases are 

driven by viral network-effects that lead to hyper-growth of user 

bases and by the competition-driven need to add new features 

coupled with application development advancements that enable 

the rapid deployment of such features. 

With existing data analysis approaches, sustaining even a couple 

years of massive compounded growth, if even possible, would 

require an investment in hardware, management, and electrical 

power, (or the equivalent in payments to cloud resource 

providers) that would be far beyond the means of all but the very 

largest of enterprises.   

1.2 Network Effect #2: Less Time 
Exacerbating the data growth problem is a continual downward 

pressure on latency for analytics.  Network-centric businesses 

must react quickly to changes in their environments and 

workloads and to the demands of their users.  For on-line 

businesses, understanding what a user is doing while they are still 

interacting with the site provides the opportunity to improve user 

experience as well as to more accurately target advertising and 

offers. Furthermore, across many industries, sophisticated data 

analytics are increasingly a core source of competitive advantage.     

Surprisingly, despite their interactive nature, most “modern” web-

based companies face analytics latencies similar to those of older 

industries – even though they are not burdened by legacy IT 

infrastructure.  In most cases, next-day reporting and analysis is 

still considered to be state-of-the-art.  This state of affairs 

frustrates business managers at these companies, while the IT 

managers fret over how to maintain even such a loose latency 

requirement in the face of massive data growth. 

1.3 Problem: A Decades-Old Legacy 
For many environments, it has become increasingly apparent that  

the data warehouse is a bottleneck in the analytics pipeline (see 

for example, [11]).   It is our belief that this problem is not simply 

a matter of tweaking existing data warehousing products.  Rather, 

it is an inherent by-product of the traditional store-first-query-

later nature of data management and database architecture.  That 

is, batch-oriented processing, in which data is first collected, then 

cleaned, then distributed and/or stored, then retrieved, then 

analyzed, is just fundamentally too inefficient to handle the 

analytics challenges faced by modern network-centric businesses.   
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While traditional DBMS architecture is obviously challenged in 

such environments we note that even new “disruptive” approaches 

like Hadoop and Map/Reduce are also based on a batch paradigm.  

Thus, they too suffer from inherent inefficiencies that render them 

exceedingly costly and slow for many common analytics tasks. 

1.4 Workload Characteristics 
Fortunately, modern analytics workloads have key attributes that 

can be exploited to solve the dual Network Effect problems of too 

much data and not enough time.  

First of all, these analytics applications tend to be “additive” in 

nature.   That is, rather than consisting of transactional updates to 

an existing set of data, these applications absorb constantly 

arriving streams of data, with new analytics applied primarily to 

the newly arriving data.  For example, an on-line business may 

wish to monitor site usage, referral or buying behavior, content 

interaction, etc. as people use the site.  As in most analytics 

workloads, the time attribute plays a central role in the analysis.   

Metrics of interest are computed on the current data over different 

time-scales and reported as is or perhaps compared to the same 

metrics over time periods in the past. 

Secondly, as is typical of analytics and reporting workloads, in 

these applications the vast majority of queries and metrics of 

interest are known ahead of time.  That is, the Key Performance 

Indicators that are needed by the business users are typically well 

known for a given organization, and new metrics are added only 

occasionally.   While as in any analytics environment, a small 

number of power users will perform ad hoc data mining types of 

analysis, the majority of the analytics processing is done on the 

core metrics.  When data mining detects a new phenomenon of 

interest, that insight typically identifies new metrics to be 

monitored from then on.   Furthermore, such ad hoc analysis can 

often be done much more efficiently on previously computed 

metrics rather than on the raw data that has been archived away in 

the database or file system. 

We argue that these dual characteristics of additive, time-oriented 

data and known queries provide an opportunity for solving the 

widening scalability gap for database technology.   We propose 

the  seamless integration of stream-oriented Continuous Analytics 

into the data management platform as the solution.   We call such 

an integrated solution a “stream-relational” database system. 

 

2. STREAM-RELATIONAL  SYSTEMS  
In this section we describe the basic idea of a Continuous 

Analytics system based on Stream-Relational principles.    

2.1 Optimizing for the Common Case 
A standard principle of systems design is to optimize for the 

common case.   That is, a system should be designed to be most 

efficient for the situations that are expected to arise the majority of 

the time.  Unfortunately, the approach underlying modern 

Relational query processing systems is optimized for a case that is 

certainly no longer the common one for analytics systems today, if 

in fact, it ever was.  Namely, the existing store-first-query-later 

approach is aimed for situations in which a large database that is 

randomly updated by transactions is manipulated by a query 

workload that is at best unpredictable in its timing, if not perhaps, 

purely ad hoc. 

 

In contrast, as discussed in the previous section, the common case 

for analytics in network-centric scenarios has neither of these 

attributes.  That is, the workloads are additive (i.e., append-

mostly) and the queries and their scheduling are largely known in 

advance. 

 

Stream Query Processing has been designed for workloads of 

additive, time-oriented processing where queries and metrics of 

interest are known ahead of time.  As such, it provides a perfect 

technology for addressing the crisis in analytics being caused by 

the Network Effect. That is, by embedding a high-performance 

stream query processor into a full SQL-based relational DBMS,  a 

unified stream-relational system can be created that is capable of 

processing even batch-oriented analytics and reporting workloads 

many orders of magnitude faster than alternative approaches.  

This degree of scalability improvement is what is required to 

address the dual problems of massive data volume growth and 

demands for low latency of network-centric applications. 

Continuous Analytics, then, can be viewed as a rethinking of 

Relational DBMS query processing for this new “common case”.  

If one were to develop a system optimized for running predefined, 

time-oriented (or sequence-oriented) analytics over continuously 

arriving streams of records, a store-first-query-later approach does 

not make sense.   Likewise, a pure streaming approach in which 

data is passed through the system once and answers are spewed 

out in real-time [7] is not adequate for a reporting-oriented 

analytics workload, as the on-line use of historical data is crucial 

to such applications. 

 

2.2 Why an Integrated Solution? 
The argument for using stream query processing to address the 

Network Effect problem is straightforward.  Stream processing 

systems execute queries incrementally over data “on-the-fly”.  

This approach leads to huge efficiency benefits by processing 

queries over data without first having to store that data, and by 

processing multiple continuous queries in a shared manner.   We 

refer to this continuous, incremental processing as “Jellybean 

Processing”:   Rather than first filling up the jellybean jar only to 

later pick through the jar to calculate metrics about the contents 

(e.g., how many beans there  are of a particular flavor), it is 

hugely more efficient to simply calculate all those metrics 

simultaneously as the beans are being put in the jar.   Such 

processing avoids the costs of reading and writing to/from disk, 

moving data repeatedly through the memory and cache hierarchy, 

starting up and tearing down query state, etc. and enables 

redundant work to be avoided across the set of active queries 

[4,12].    

 

The argument for not using just a standalone stream query system 

is also straightforward.   Stream query systems are typically 

designed solely for real-time applications involving monitoring, 

alerting, and/or event detection.   These systems often have query 

languages that beyond superficial similarities differ sharply in 

semantics and capabilities from standard SQL.   Their use 

typically requires business processes that are structured 

specifically for monitoring and utilizing real-time data.   

Unfortunately, most existing business applications are not yet able 
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to cope with real-time data, and for many applications, real-time 

data simply is inappropriate.   Existing analytics and reporting 

applications have been built assuming a standard database 

interface in which SQL queries are submitted to the system and 

answers are delivered according to the reporting policies and 

schedule of the given use case. 

 

2.3 Realizing an Integrated Approach 
At the heart of the Continuous Analytics approach is a seamless 

merger of streaming and traditional Relational query processing.  

From a language point of view, this merger is surprisingly easy to 

do.   The key is to begin with the philosophy of making minimal 

extensions to the existing SQL approach while not losing any of 

its well-understood functionality or behaviors. With thought, even 

concepts such as transactional consistency can be extended to 

continuous processing.  The result of this approach is a system 

that is inherently familiar to experienced database developers and 

DBAs and that fits nicely into existing applications while 

providing dramatic performance and scalability improvements.  

  

From a technology point of view, the merger is more involved.  

The key concept here is that streaming data and stored data are not 

intrinsically different.  Rather, stored data is simply streaming 

data that has been entered into persistent structures such as tables 

and indexes.   Starting from this core principle, it becomes 

possible to construct a system that processes queries over streams 

and tables in a way that does not require database users to 

overhaul their thinking or database administrators to learn a 

completely new set of concepts in order to leverage the 

performance and scalability benefits of this new technology. 

 

And as a side benefit – a Continuous Analytics system can 

provide “real-time” processing for those applications that are 

equipped to take advantage of it.  

 

3. DESIGN CONSIDERATIONS  
In this section,, we provide a brief overview of our Stream-

Relational extension of SQL and outline some of the 

implementation benefits that result from this approach. 

3.1 Query Langauge Overview 
Much of the early research on stream processing systems was 

ambiguous about the relationship between stream and relational 

query processing.   In fact, some early systems did not support a 

query language at all [1] or introduced imperative syntax such as 

“for loops” [5].   In contrast, the STREAM project [2] introduced 

the Continuous Query Language (CQL), which explicitly defined 

this relationship.   CQL was based on formal relational languages 

and used the explicit relationship between relations and streams 

primarily as a way to provide clear and consistent semantics for 

streaming queries.   In our language, called TruSQL, we have 

taken this approach further, by actually integrating stream 

processing fully into SQL, including persistence.   In other words, 

TruSQL is a superset of SQL. 

We add the notion of streams to the standard relational model. A 

stream is an ordered unbounded relation. For instance, the 

following DDL example shows the definition of url_stream, a 

stream that is ordered on an attribute called atime where each 

record represents a URL and the IP-address of the client machine 

that accessed that URL at that time.  

 

CREATE STREAM url_stream 

( url  varchar(1024), 

  atime      timestamp  CQTIME USER, 

  client_ip  varchar(50), 

);   

Example 1 - DDL For Creating a Stream 

 

In TruSQL, queries can be posed exclusively on relations, 

exclusively on streams, or on a combination of streams and 

relations. In the first case, a query produces a relation as an output 

and has the exact same semantics as in SQL. We refer to queries 

over relations as snapshot queries (SQ) because they operate on a 

snapshot of the relations at a given time. In the other cases, 

however, a query produces a stream as an output. Since a stream 

is unbounded, a query that produces a stream never ends and is 

therefore called a continuous query (CQ).  SQ’s produce an 

answer and terminate (i.e., they are regular relational queries) 

while CQ’s produce answers incrementally and run until they are 

explicitly terminated. 

 

Because streams are unbounded, when a stream is used in a SQL 

query, the system must be told how and when to consider the data 

in the stream.  This is done using a window clause.  The window 

clause effectively creates a sequence of relations from the stream, 

and the SQL query is applied to each of these relations.   This is 

known as “RSTREAM” semantics in CQL [2]. 

 

 

Figure 1 – Windows Produce a Sequence of Tables 

 

In TruSQL there are several different types of window clauses, 

but a typical window clause specifies the width of the window and 

how often it is moved forward.  These can be specified using time, 

row counts or combinations of the two. For example, the query 

below is a CQ over the url_stream that each minute (specified by 

“ADVANCE”) produces the top ten urls visited over the previous 

five minutes (specified by “VISIBLE”).  Note that the only 

extension to the SQL syntax here is the window clause for the 

stream. 

SELECT url, count(*) url_count 

FROM url_stream <VISIBLE '5 minutes' 

                 ADVANCE '1 minute'> 

GROUP by url 

ORDER by url_count desc 

LIMIT    10 

Example 2 - A Simple Continuous Query (CQ) 

STREAMS TABLES Window operators 

…
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The result of a stream-only or mixed (i.e., streams joined with 

relations) query in TruSQL is a stream formed by concatenating 

the sequence of relations produced by repeated execution of the 

query.  Of course, as in a traditional database system, data 

independence allows for efficient implementations of these 

semantics under the covers. 

3.2 Composition: Derived streams and Views 
An important benefit of building on SQL is the ability to leverage 

the query composition features of the language.   TruSQL 

supports two approaches for composing CQs: Streaming Views 

and Derived Streams.   A Streaming View is simply a SQL view 

defined using a CREATE VIEW statement with a query that 

includes one or more streams.   A Derived Stream is a stream 

object defined by a CREATE STREAM AS statement.   

As with relational views, a query that defines a Streaming View is 

only instantiated when the view is itself used in another query.  In 

contrast, a query that defines a Derived Stream runs in an “always 

on” mode until it is explicitly dropped. For example, consider the 

DDL statement below:  

 

CREATE STREAM urls_now as 

SELECT url, count(*) as scnt, cq_close(*) 

FROM url_stream <VISIBLE '5 minutes' 

                 ADVANCE '1 minute'> 

GROUP by url; 

 

Example 3 – Creating a Derived Stream 

 

This statement creates a derived stream called urls_now that 

continuously computes a streaming query. It returns, each minute, 

the number of appearances of each URL in the  url_stream 

over  the previous five minutes. 1 

Note that the results produced by urls_now are always available 

within at most one minute. A derived stream is, therefore, 

particularly useful for clients that operate in a disconnected 

fashion since the results of a CQ are available upon the first 

window close after a client re-connects to the system.    Also note, 

however, that the urls_now stream, as defined in this example 

is not archived.   That is, as specified, its results are simply 

discarded if there is no active CQ using the stream.   We show 

how to create an archived Derived Stream next. 

3.3 Active Tables: Persistence Meets Streams 
Another important advantage of the approach of incorporating 

SQL is that it becomes simple to provide persistence to streams 

using standard SQL tables.  Such tables are truly full-fledged SQL 

tables, and can be used in the same ways that any SQL table can 

be used.   For example, consider the following DDL statements:  

 

                                                                 

1 The “cq_close(*)” function returns the timestamp at the close of 

the relevant window. 

CREATE TABLE urls_archive  

(url varchar(1024), 

 scnt integer, 

 stime timestamp); 

 

CREATE CHANNEL urls_channel  

FROM urls_now  

INTO urls_archive APPEND; 

Example 4 - Persistence for Streams: Tables and Channels 

 

The first statement is a standard SQL CREATE TABLE statement 

that creates a table called urls_archive.  The second 

statement is an extended DDL statement that creates a special 

Channel object called urls_channel that is responsible for 

storing the Derived Stream urls_now into the urls_archive 

table.  Note that in this case, “append” semantics are being used 

so that new results are simply added to the table. Another option 

is “replace”, in which each new result from the stream overwrites 

the previous result.  Since urls_archive is kept continuously 

updated, we call it an Active Table. 

 

The table urls_archive is a SQL table that can be used as any 

other table in a SQL query.  For example, it can be queried as part 

of a report generation process.   The advantage over the traditional 

approach of running the report on the raw data only after it has 

been stored, of course, is that the reporting query will run 

extremely fast, as the computation has already been done.  And 

because Active Tables are simply SQL tables, indexes can be 

defined over them to further improve query performance.   Thus, 

the combination of Derived Streams with Active Tables can be 

viewed as an extremely efficient materialized view mechanism; 

One that leverages modern, shared stream query processing to 

explicitly address the requirements of additive analytics in  

Network Effect environments. 

 

Active Tables are also the key for enabling continuous queries 

that compare current metrics with past metrics.   Such a query is 

written simply as a join between the stream and the active table:  

 

select c.scnt, h.scnt, c.stime 

from (select sum(cnt) as scnt,  

      cq_close(*) as stime 

      from urls_now <slices 1 windows>) c,  

      urls_archive h 

where c.stime –‘1 week’::interval = h.stime 

Example 5 - Stream-Table  Join for Historical Comparisons 

 

The above discussion covers only a small portion of the TruSQL 

language, but it demonstrates the ease with which stream query 

processing and traditional relational query processing concepts 

can be combined at the language level and identifies some of the 

important benefits of doing so.   While other stream processing 

approaches have embraced SQL to varying degrees, we believe 

that beyond simply adopting some of the SQL syntax, there are 

tremendous advantages to be had by carefully integrating stream 
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and traditional SQL functionality.    This seamless Stream-

Relational integration is the key to the Continuous Analytics 

approach. 

 

4.  IMPLEMENTATION ADVANTAGES 
A unified stream-relational language that minimally extends SQL 

provides obvious benefits to database administrators and 

application developers who are already proficient at using SQL 

database systems to solve their analytics and reporting problems.   

The minimalist approach, however, has important benefits in 

terms of systems implementation as well.   These benefits stem 

from the fact that existing concepts and techniques for query 

processing, transactional semantics, high-availability and such can 

be extended to work in the continuous analytics setting.   Perhaps 

of equal importance, however, is that by unifying streaming data 

with relational data it becomes possible to leverage large portions 

of existing DBMS code to build such a system, thereby avoiding 

the reinvention and redevelopment of functionality that often 

takes a decade or more to get right.   For example, the CQ query 

plans in many cases are able to reuse the existing implementations 

of standard, well understood, iterator-style relational query 

operators  (e.g., filters, joins, aggregates, sort). 

 

Another important area of reuse is in the transactional and 

recovery subsystems. Since a CQ essentially runs as a long-

running transaction, and can involve tables as well as streams, a 

major semantic issue that needs to be addressed is the visibility 

rules with respect to updates of tables. The isolation mechanisms 

of some RDBMSs, such as  multi-version concurrency control can 

be extended to provide continuous isolation semantics that are 

meaningful in a streaming environment.   For example, a notion of 

window consistency that ensures that updates to tables are visible 

only on window boundaries [6].  

 

Likewise, recovery is a key problem that needs to be solved in any 

system that is intended for use in a mission-critical fashion. 

Unlike a traditional RDBMSs, that only guarantees the integrity 

of durable state (all in-flight transactions are deemed aborted on 

failure), a Stream-Relational system needs to recover runtime state 

as well as durable state. In a single-node implementation, this 

runtime state must be rebuilt from data persisted on-disk. While a 

common approach for this kind of state recovery is to periodically 

checkpoint the internal state of the various CQ operators, such an 

approach is hard to implement correctly and requires every 

operator to be “taught” how to recover its state. Using the concept 

of Active Tables, it is possible to instead implement a strategy that 

rebuilds runtime state from disk automatically.  Such an 

opportunity is yet another example of the implementation benefits 

to be gained by carefully following an approach of integrated 

Stream-Relational processing. 

 

Continuous Analytics can be used anywhere existing SQL-based 

processing is used for reporting and analytics.   As such, the range 

of use cases spans the breadth of existing data warehouse and 

business intelligence applications as well as new applications 

where such techniques have been deemed inappropriate due to 

their high cost and high latency. 

The benefits of the approach can be huge.   For example, in one 

scenario for a network security reporting application, a batch-

oriented query taking over 20 minutes using a database system 

(which was one of a suite of dozens of queries that needed to be 

run several times a day), was produced in milliseconds (yes, this is 

a 5 orders of magnitude speed up!)  by simply running the query 

continuously and incrementally as the data arrived, and storing the 

results in an Active Table for later retrieval.   The effort involved 

in converting this static query to a “jellybean” query was 

measured in minutes, and the overall architecture of the solution 

remained unchanged – a standard database was simply replaced 

by a SQL-compliant Stream-Relational database system. 

 

5. RELATED WORK 
Continuous Analytics is a technique for addressing the analytics 

and reporting demands of modern network-centric enterprises.   It 

is an extension of traditional database approaches to analytics, and   

as such, there is much related work both in terms of techniques 

that can be incorporated and in terms of alternative approaches. 

 

Continuous Analytics clearly derives from the intense activity in 

stream processing that has been an important thrust of the 

database research community in recent years.   In particular, 

academic prototypes such as Aurora, Nile, Stream, and 

TelegraphCQ [1, 5, 3, 9] examined many aspects of stream query 

processing, and developed key concepts for efficient query 

processing.  The focus of these research efforts was largely on 

“real-time” applications such as large-scale sensor networks, 

financial trading, and telecom.   Numerous companies and open 

source efforts have followed the initial research, and by and large, 

these efforts have focused on the same set of problems.  

 

A key difference between this earlier work and our approach, 

however, is that the earlier systems all treated stream processing 

as distinct from traditional relational (i.e., persistent) query 

processing.   We believe that this narrow scope has been a key 

inhibitor to the more mainstream adoption of stream processing 

techniques in many areas.   Furthermore, by separating the stream 

world from the table world, huge opportunities to leverage 

existing skill sets, tool sets, IT infrastructure, and code are lost.   

The Stream-Relational approach we advocate here is aimed at 

reclaiming these benefits while providing the necessary 

performance for the massive data analytics problem being faced 

by network-centric enterprises. 

 

Another important related technology is that of materialized views 

(MVs) [14].  MVs were developed precisely to address the 

inherent inefficiencies of store-first-query-later database 

technology for query-heavy, non-ad hoc workloads observed in 

many analytics applications.  MVs, however, are not optimized 

for such workloads.  They still require storing the data, are not 

optimized for high data arrival rates, they do not exploit shared 

processing for the full SQL language, and they do not fully 

exploit the time-oriented semantics of the data and queries in 

modern analytics workloads.    

 

This latter limitation is fundamental.  MVs are refreshed in batch 

mode and therefore may be out of date at the time of the query. 

There are limited means to tell the system when to update; mostly 

on a timer or upon transaction completion. And when the update 
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starts, the whole batch is processed. Even if the DBMS is clever 

enough to process the changes incrementally, disk operations, 

trigger mechanisms and transaction management take significant 

time even before processing has started.  

 

By contrast, the Continuous Analytics approach calls for 

processing the data as it arrives utilizing the available CPU cycles, 

so by the end of the appropriate time window the answer is ready. 

Streaming windows offer more control over update scheduling. 

Since the system knows that the query is evaluated continuously, 

there is no need to reissue the query. But the most important 

difference is that stream processing takes advantage of the fact 

that incoming data is ordered without the need to create and 

maintain on-disk indices. 

 

In some sense, Continuous Analytics can be viewed as a next 

generation MV mechanism exploiting the full power of stream 

query processing technology and the full power of a traditional 

RDBMS to address the scalability demands of Network Effect 

applications. 

 

Finally, many organizations are using or experimenting with data 

parallel processing technology such as map/reduce or Hadoop [8].  

Such technologies are effective at bringing massive amounts of 

processing to bear on data crunching problems, but are inherently 

batch-oriented and are much more resource intensive than the 

Jellybean processing that a stream-relational system can provide.   

They also have low-level interfaces that can make application 

development and maintenance difficult.     

 

Recent systems such as Hive [9] are addressing the interface 

language issue by putting SQL interfaces on top of such libraries.  

Such projects, as well as the increasing number of SQL-based 

parallel database and data warehousing products raise the 

possibility for closer integration between Continuous Analytics 

systems and more batch-oriented approaches.   A key to such 

integration, however is how faithfully each of the systems 

conforms to the SQL interface. 

 

6. CONCLUSIONS 
 

Modern network- and web-based applications driven by the 

Network Effect are pushing traditional database and data 

warehousing technologies beyond their limits due to their 

massively increasing data volumes and demands for low latency.  

To address this problem, we  advocate an integrated query 

processing approach that runs SQL continuously and 

incrementally over data *before* that data is stored in the 

database.  This Continuous Analytics technology is seamlessly 

integrated into a full-function database system, creating a 

powerful and flexible system that can run SQL over tables, 

streams, and combinations of the two.   

 

A continuous analytics system can run many orders of magnitude 

more efficiently than traditional store-first-query-later 

technologies.  Because of their Stream-Relational nature, such 

systems can efficiently support a range of workloads from batch-

reporting to “real-time” monitoring.   They can also support 

workloads that need to combine streaming and table-based data, 

both for enriching fact data with table-based dimension data and 

for comparing current metrics with historical ones. 

 

Perhaps most importantly, because they do not break the existing 

interface models for data analytics, Continuous Analytics systems 

built using a Stream-Relational approach can be easily integrated 

into existing IT environments while providing the extreme 

scalability and performance demanded by modern data-intensive 

applications.    As such, the approach represents a long-needed 

rethinking of query processing in light of the new “common case” 

for data analytics. 
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