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Abstract— Data quality is a critical problem in modern
databases. Data entry forms present the first and arguably best
opportunity for detecting and mitigating errors, but there has
been little research into automatic methods for improving data
quality at entry time. In this paper, we propose USHER, an end-
to-end system for form design, entry, and data quality assurance.
Using previous form submissions, USHER learns a probabilistic
model over the questions of the form. USHER then applies this
model at every step of the data entry process to improve data
quality. Before entry, it induces a form layout that captures the
most important data values of a form instance as quickly as
possible. During entry, it dynamically adapts the form to the
values being entered, and enables real-time feedback to guide the
data enterer toward their intended values. After entry, it re-asks
questions that it deems likely to have been entered incorrectly.
We evaluate all three components of USHER using two real-world
data sets. Our results demonstrate that each component has the
potential to improve data quality considerably, at a reduced cost
when compared to current practice.

I. INTRODUCTION

Organizations and individuals routinely make important

decisions based on inaccurate data stored in supposedly au-

thoritative databases. Data errors in some domains, such as

medicine, may have particularly severe consequences. These

errors can arise at a variety of points in the lifecycle of data,

from data entry, through storage, integration and cleaning to

analysis and decision-making [1]. While each step presents

an opportunity to address data quality, entry-time offers the

earliest opportunity to catch and correct errors. The database

community has focused on data cleaning once data has

been collected into a database, and has paid relatively little

attention to data quality at collection time [1], [2]. Current

best practices for quality during data entry come from the field

of survey methodology, which offers principles that include

manual question orderings and input constraints, and double

entry of paper forms [3]. Although this has long been the

de facto quality assurance standard in data collection and

transformation, we believe this area is ripe for reconsideration.

For both paper forms and direct electronic entry, we posit that a

data-driven and more computationally sophisticated approach

can significantly outperform these decades-old static methods

in both accuracy and efficiency of data entry.

The problem of data quality is magnified in low-resource

data collection settings. Recently, the World Health Organiza-

tion likened the lack of quality health information in develop-

ing regions to a “gathering storm,” saying, “[to] make people

count, we first need to be able to count.” [4]. Indeed, many

health organizations, particularly those operating with limited

resources in developing regions, struggle with collecting high-

quality data. Why is data collection so challenging? First,

many organizations lack expertise in paper and electronic form

design and rely on ad hoc mapping of required data fields

to data entry widgets by intuition [5], [6]. Second, in the

paper form transcription process, double entry is too costly

and takes too long — we witnessed an HIV/AIDS program

running clinical care on paper forms while researchers and

funders receive the output of clean, double-entered digital data

much later. Finally, even organizations in developing regions

are beginning to use mobile devices like smartphones for data

collection, with community health workers doing direct digital

data entry in remote locations. Electronic data entry devices

offer different affordances than those of paper, displacing the

role of traditional form design and double entry [5]. We often

saw that there were no data quality checks at all in these cases;

Patnaik et al. found mobile data entry quality to be ten times

worse than dictation to a human operator [7].

To address this spectrum of data quality challenges, we have

developed USHER, an end-to-end system that can improve

data quality and efficiency at the point of entry by learning

probabilistic models from existing data, which stochastically

relate the questions of a data entry form. These models form

a principled foundation on which we develop information-

theoretic algorithms for form design, dynamic form adaptation

during entry, and question verification after entry:



1) Since form layout is often ad hoc, USHER optimizes

any flexibility for question ordering according to a

probabilistic objective function that aims to maximize

the information content of form answers as early as

possible — we call this the greedy information gain

principle.

2) During entry, the model’s probability estimates are used

to dynamically reorder questions, again to maximize

information gain according to the same principle. This

is appropriate in scenarios where the form is presented

one question at a time, or in small batches.

3) After the submission of a complete form instance, the

model is consulted to predict which responses may be

erroneous, so as to re-ask those questions in order to

verify their correctness — we call this the contextual-

ized error likelihood principle. This focused re-asking

approximates the benefits of double entry at a fraction

of the cost.

In addition, USHER’s approach provides a framework for

reasoning about and organizing feedback mechanisms for

the data-entry user interface. During data entry, USHER can

predict the likelihood of unanswered fields given entered

answers. Using these probabilities, and following the intuition

that multivariate outliers are values warranting reexamination

by the data entry worker, USHER can guide the user with much

more specific and context-aware feedback. In Section VIII, we

offer initial thoughts on design patterns for USHER-inspired

data entry interfaces.

The contributions of this paper are fourfold:

1) We describe our designs for two probabilistic models for

an arbitrary data entry form that model both question

ordering and error likelihood.

2) We describe how USHER uses these models to provide

three forms of guidance: static form design, dynamic

question ordering, and re-asking.

3) We present experiments showing that USHER has the po-

tential to improve data quality at reduced cost. We study

two representative data sets: direct electronic entry of

survey results about political opinion, and transcription

of paper-based patient intake forms from an HIV/AIDS

clinic in Tanzania.

4) Extending our ideas on form dynamics, we propose new

user interface principles for designing contextualized,

intuitive feedback about the likelihood of data as it is en-

tered. This provides a foundation for incorporating data

cleaning visualizations directly into the entry process.

II. RELATED WORK

Our work builds upon several areas of related work. We

provide an overview in this section.

A. Data Cleaning

In the database literature, data quality has typically been

addressed under the rubric of data cleaning [1], [2]. Our work

connects most directly to data cleaning via multivariate outlier

detection; it is based in part on interface ideas first proposed by

Hellerstein [8]. By the time such retrospective data cleaning

is done, the physical source of the data is typically unavailable

— thus, errors often become too difficult or time-consuming to

be rectified. USHER addresses this issue by applying statistical

data quality insights at the time of data entry. Thus, it can catch

errors when they are made, and when ground-truth values may

still be available for verification.

B. User Interfaces

Past research on improving data entry is mostly focused on

adapting the data entry interface for user efficiency improve-

ments. Several such projects have used learning techniques

to automatically fill or predict a top-k set of likely values

[9], [10], [11], [12], [13], [14], [15]. For example, Ali and

Meeks [9] predicted values for combo-boxes in web forms and

measured improvements in the speed of entry; Ecopod [15]

generated type-ahead suggestions that were improved by geo-

graphic information; Hermens et al. [10] automatically filled

leave-of-absence forms using decision trees and measured

predictive accuracy and time savings. In these approaches,

learning techniques are used to predict form values based on

past data, and each measures the time savings of particular

data entry mechanisms and/or the proportion of values their

model was able to correctly predict. USHER’s focus is on

improving data quality, and its probabilistic formalism is based

on learning relationships within the underlying data that guide

the user towards more correct entries. In addition to predicting

question values, we develop and exploit probabilistic models

of user error, and target a broader set of interface adaptations

for improving data quality, including question reordering and

re-asking, and widget customizations that provide feedback to

the user based on the likelihood of their entries. Some of the

enhancements we make for data quality could also be applied

to improve the speed of entry.

C. Clinical Trials

Data quality assurance is a prominent topic in the science

of clinical trials, where the practice of double entry has been

questioned and dissected, but nonetheless remains the gold

standard [16], [17]. In particular, Kleinman takes a probabilis-

tic approach toward choosing which forms to re-enter based

on the individual performance of data entry staff [18]. This

cross-form validation has the same goal as our approach of

reducing the need for complete double entry, but does so

at a much coarser level of granularity. It requires historical

performance records for each data entry worker, and does not

offer dynamic reconfirmation of individual questions. In con-

trast, USHER’s cross-question validation adapts to the actual

data being entered in light of previous form submissions, and

allows for a principled assessment of the tradeoff between cost

(of reconfirming more questions) versus quality (as predicted

by the probabilistic model).

D. Survey Design

The survey design literature includes extensive work on

proper form design for high data quality [3], [19]. This



literature advocates the use of manually specified constraints

on response values. These constraints may be univariate (e.g.,

a maximum value for an age question) or multivariate (e.g.,

disallowing gender to be male and pregnant to be yes). Some

constraints may also be “soft,” and only serve as warnings

regarding unlikely combinations (e.g., age being 60 and preg-

nant being yes).

The manual specification of such constraints requires a

domain expert, which can be prohibitive in many scenarios.

By relying on prior data, USHER learns to automatically infer

many of these same constraints without requiring their explicit

specification. When these constraints are violated during entry,

USHER can then flag the relevant questions, or target them for

re-asking.

However, USHER does not preclude the manual specifica-

tion of constraints. This is critical, because previous research

into the psychological phenomena of survey filling has yielded

common constraints not inherently learnable from prior data

[3]. This work provides heuristics such as “groups of topi-

cally related questions should often be placed together,” and

“questions about race should appear at the end of a survey.”

USHER complements these human-specified constraints, ac-

commodating them while leveraging any remaining flexibility

to optimize question ordering in a data-driven manner.

III. SYSTEM

A. A Data-driven Approach

USHER builds a probabilistic model for an arbitrary data

entry form in two steps: first, by learning the relationships

between form questions via structure learning; and second, by

estimating the parameters of a Bayesian network, which then

allows us to generate predictions and error probabilities for

the form.

After the model is built, USHER uses it to automatically or-

der a form’s questions for greedy information gain. Section V

describes both static and dynamic algorithms, which employ

criteria based on the magnitude of statistical information gain

that is expected in answering a question, given the answers that

have been provided so far. This is a key idea in our approach.

By front-loading predictive potential, we increase the models’

capacity in several ways. First, from an information theoretic

perspective, we improve our ability to do multivariate pre-

diction and outlier detection for subsequent questions. As we

discuss in more detail in Section VIII, the predictive ability can

be applied by parameterizing data entry widgets (type-ahead

suggestions, default values), assessing answers (outlier flags),

and performing in-flight cross-validation (survey design par-

lance for re-asking of questions). Second, from a psychological

perspective, front-loading information gain also addresses the

human issues of user fatigue and limited attention span, which

can result in increasing error rates over time, and unanswered

questions at the end of the form.

Our approach is driven by the same intuition underlying the

practice of curbstoning, which was related to us in discussion

with survey design experts [6]. Curbstoning is a way in which

an unscrupulous door-to-door surveyor shirks work: he or she
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Fig. 1. Bayesian network for the patient dataset, showing probabilistic
relationships between form questions.

asks an interviewee only a few important questions, and then

uses those responses to complete the remainder of a form

while sitting on the curb outside the home. The constructive

insight here is that a well-chosen subset of questions can

often enable an experienced agent to intuitively predict the

remaining answers. USHER’s question ordering algorithms

formalize this intuition via the principle of greedy information

gain, and use them (scrupulously) to improve data entry.

USHER’s learning algorithm relies on training data. In prac-

tice, a data entry backlog can serve as this training set. In the

absence of sufficient training data, USHER can bootstrap itself

on a “uniform prior,” generating a form based on the assump-

tion that all inputs are equally likely. Subsequently, a training

set can gradually be constructed by iteratively capturing data

from designers and potential users in “learning runs.” It is a

common approach to first fit to the available data, and then

evolve a model as new data becomes available. This process

of semi-automated form design can help institutionalize new

forms before they are deployed in production.

USHER adapts to a form and dataset by crafting a custom

model. Of course, as in many learning systems, the model

learned may not translate across contexts. We do not claim

that each learned model would or should fully generalize to

different environments. Instead, each context-specific model

is used to ensure data quality for a particular situation,

where we expect relatively consistent patterns in input data

characteristics. In the remainder of this section, we illustrate

USHER’s functionality with examples. Further details, partic-

ularly regarding the probabilistic model, follow in the ensuing

sections.

B. Examples

We offer two running examples. First, the patient dataset

comes from paper patient-registration forms, transcribed by

data entry workers, from a HIV/AIDS program in Tanzania.1

Second, the survey dataset comes from a phone survey of

political opinion in the San Francisco Bay Area, entered by

survey professionals directly into an electronic form.

In each example, a form designer begins by creating a sim-

ple specification of form questions and their prompts, response

data types, and constraints. The training data set is made up of

prior form responses. By running the learning algorithms we

1We have pruned out questions with identifying information about patients,
as well as free-text comment fields.
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Fig. 2. Bayesian network for the survey dataset. The probabilistic relation-
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Fig. 3. Example question layout generated by our ordering algorithm. The
arrows reflect the probabilistic dependencies from Figure 1.

present in Section IV, USHER builds a Bayesian network of

probabilistic relationships from the data, as shown in Figures

1 and 2. In this graph, an edge captures a close stochastic

dependency between two random variables (i.e., form ques-

tions). Two questions with no path between them in the graph

are probabilistically independent. Figure 2 illustrates a denser

graph, demonstrating that political survey responses tend to be

highly correlated. Note that a standard joint distribution would

show correlations among all pairs of questions; the sparsity

of these examples reflects conditional independence patterns

learned from the data. Graphically encoding independence is

a now-standard method in machine learning that clarifies the

underlying structure, mitigates data over-fitting, and improves

the efficiency of probabilistic inference.

The learned structure is subject to manual control: a de-

signer can override any learned correlations that are believed to

be spurious, or that make the form more difficult to administer.

For the patient dataset, USHER generated the static or-

dering shown in Figure 3. We can see in Figure 3 that the

structure learner predicted RegionCode to be correlated with

DistrictCode. It happens that our data set comes mostly from

clinics in a single region of Tanzania, so RegionCode has low

information entropy. It is not surprising then, that USHER’s

suggested ordering has DistrictCode early and RegionCode

last — once we observe DistrictCode, RegionCode has very

little additional expected conditional information gain. When it

is time to input the RegionCode, if the user selects an incorrect

value, the model can be more certain that it is unlikely. If the

user stops early and does not fill in RegionCode, the model can

infer the likely value with higher confidence. In general, static

question orderings are appropriate as an offline process for

paper forms where there is latitude for (re-)ordering questions,

within designer-specified constraints.

During data entry, USHER uses the probabilistic machinery

to drive dynamic updates to the form structure. One type of

update is the dynamic selection of the best next question to ask

among questions yet to be answered. This can be appropriate

in several situations, including surveys that do not expect users

to finish all questions, or direct-entry interfaces (e.g. mobile

phones) where one question is asked at a time. We note that

it is still important to respect the form designer’s a priori

specified question-grouping and -ordering constraints when a

form is dynamically updated.

USHER is also used during data entry to provide dynamic

feedback, by calculating the conditional distribution for the

question in focus, and using it to assess the likelihood of

the user’s entry. Continuing the example above, we could,

before entry, use a “split” drop-down menu for RegionCode

that features the most likely answers “above the line,” and after

entry, color the chosen answer red if it is a conditional outlier.

We discuss in Section VIII the design space and potential

impact of data entry feedback that is more specific and context

aware.

At the end of a data entry run, USHER calculates error

probabilities for the whole form and for each question. These

probabilities are dependent on all available values for a single

form instance provided by the data entry worker. For each

form question, USHER predicts how likely that the response

provided is erroneous, by examining whether it is likely to

be a multivariate outlier, i.e., that it is unlikely with respect

to the responses for other fields, If there are responses with

error probabilities exceeding some threshold, USHER re-asks

those questions, ordered by the highest error probability, as

described in Section VI.

C. Implementation

We have implemented USHER as a web application (Fig-

ure 4). The UI loads a simple form specification file, which

contains form question details and the location of the training

data set. Form question details include question name, prompt,

data type, widget type, and constraints. The server instantiates

a model for each form. The server passes information about

question responses to the model as they are filled in; in ex-

change, the model returns predictions and error probabilities.
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Fig. 4. USHER components and data flow: (1) model a form and its data,
(2) generate question ordering according to greedy information gain, (3)
instantiate the form in a data entry interface, (4) during and immediately
after data entry, provide dynamic re-ordering, feedback and re-confirmation
according to contextualized error likelihood.

Models are created from the form specification, the training

data set, and a graph of learned structural relationships. We

perform structure learning offline with BANJO [20], an open

source Java package for structure learning of Bayesian net-

works. Our graphical model is implemented in two variations:

one is based on a modified version of JavaBayes [21] — an

open-source Java software for Bayesian inference. Because

JavaBayes only supports discrete probability variables, we

implemented the error prediction version of our model using

Infer.NET [22], a Microsoft .NET Framework toolkit for

Bayesian inference.

IV. LEARNING A MODEL FOR DATA ENTRY

The core of the USHER system is its probabilistic model of

the data, represented as a Bayesian network over form ques-

tions. This network captures relationships between a form’s

question elements in a stochastic manner. In particular, given

input values for some subset of the questions of a particular

form instance, the model can infer probability distributions

over values of that instance’s remaining unanswered questions.

In this section, we show how standard machine learning

techniques can be used to induce this model from previous

form entries.

We will use F = {F1, . . . , Fn} to denote a set of random

variables representing the values of n questions comprising

a data entry form. We assume that each question response

takes on a finite set of discrete values; continuous values

are discretized by dividing the data range into intervals and

assigning each interval one value.2 To learn the probabilistic

model, we assume access to prior entries for the same form.

USHER first builds a Bayesian network over the form

questions, which will allow it to compute probability dis-

tributions over arbitrary subsets G ⊆ F of form question

2Using richer distributions to model fields with continuous or ordinal
answers (e.g., with Gaussian models) could provide additional improvement,
and is left for future work

random variables, given already entered question responses

G′ = g′ for that instance, i.e., P (G | G′ = g′). Constructing

this network requires two steps: first, the induction of the

graph structure of the network, which encodes the conditional

independencies between the question random variables F; and

second, the estimation of the resulting network’s parameters.

The naı̈ve approach to structure selection would be to

assume complete dependence of each question on every other

question. However, this would blow up the number of free

parameters in our model, leading to both poor generaliza-

tion performance of our predictions, and prohibitively slow

model queries. Instead, we learn the structure using the prior

form submissions in the database. USHER searches through

the space of possible structures using simulated annealing,

and chooses the best structure according to the Bayesian

Dirichlet Equivalence criterion [23]. This criterion optimizes

for a tradeoff between model expressiveness (using a richer

dependency structure) and model parsimony (using a smaller

number of parameters), thus identifying only the prominent,

recurring probabilistic dependencies. This search is performed

using the BANJO software toolkit [20]. Figures 1 and 2 show

automatically learned structures for two data domains.3

In certain domains, form designers may already have strong

common-sense notions of questions that should or should

not depend on each other (e.g., education level and income

are related, whereas gender and race are independent). As a

postprocessing step, the form designer can manually tune the

resulting model to incorporate such intuitions. In fact, the en-

tire structure could be manually constructed in domains where

an expert has comprehensive prior knowledge of the questions’

interdependencies. However, a casual form designer is unlikely

to consider the complete space of question combinations when

identifying correlations. In most settings, we believe a fully

automatic approach to learning multivariate correlations would

yield more effective inference.

Given a graphical structure of the questions, we can then

estimate the conditional probability tables that parameterize

each node in a straightforward manner, by counting the

proportion of previous form submissions with those response

assignments. The probability mass function for a single ques-

tion Fi with m possible discrete values, conditioned on its set

of parent nodes P(Fi) from the Bayesian network, is:

P (Fi = fi | {Fj = fj : Fj ∈ P(Fi)})

=
N(Fi = fi, {Fj = fj : Fj ∈ P(Fi)})

N({Fj = fj : Fj ∈ P(Fi)})
. (1)

In this notation, P (Fi = fi | {Fj = fj : Fj ∈ P(Fi)})
refers to the conditional probability of question Fi taking value

fi, given that each question Fj in P(Fi) takes on value fj .

Here, N(X) is the number of prior form submissions that

match the conditions X — in the denominator, we count the

number of times a previous submission had the subset P(Fi)
of its questions set according to the listed fj values; and in the

3It is important to note that the arrows in the network do not represent
causality, only that there is a probabilistic relationship between the questions.



Input: Model G with questions F = {F1, . . . , Fn}
Output: Ordering of questions O = (O1, . . . , On)
O← ∅;
while |O| < n do

F ← argmaxFi /∈O H(Fi | O);
O← (O, F );

end
Algorithm 1: Static ordering algorithm for form layout.

numerator, we count the number of times when those previous

submissions additionally had Fi set to fi.

Because the number of prior form instances may be limited,

and thus may not account for all possible combinations of prior

question responses, equation 1 may assign zero probability to

some combinations of responses. Typically, this is undesir-

able; just because a particular combination of values has not

occurred in the past does not mean that combination cannot

occur at all. We overcome this obstacle by smoothing these

parameter estimates, interpolating each with a background

uniform distribution. In particular, we revise our estimates to:

P (Fi = fi | {Fj = fj : Fj ∈ P(Fi)})

= (1− α)
N(Fi = fi, {Fj = fj : Fj ∈ P(Fi)})

N({Fj = fj : Fj ∈ P(Fi)})
+

α

m
, (2)

where m is the number of possible values question Fi can

take on, and α is the fixed smoothing parameter, which was

set to 0.1 in our implementation. This approach is essentially

a form of Jelinek-Mercer smoothing with a uniform backoff

distribution [24].

Once the Bayesian network is constructed, we can infer

distributions of the form P (G | G′ = g′) for arbitrary

G,G′ ⊆ F — that is, the marginal distributions over sets of

random variables, optionally conditioned on observed values

for other variables. Answering such queries is know as the

inference task. There exist a variety of inference techniques.

In our experiments, the Bayesian networks are small enough

that exact techniques such as the junction tree algorithm [25]

can be used. For larger models, faster approximate inference

techniques may be preferable.

V. QUESTION ORDERING

Having described the Bayesian network, we now turn to its

applications in the USHER system. We first consider ways of

automatically ordering the questions of a data entry form. The

key idea behind our ordering algorithm is greedy information

gain — that is, to reduce the amount of uncertainty of a single

form instance as quickly as possible. Note that regardless of

how questions are ordered, the total amount of uncertainty

about all of the responses taken together — and hence the

total amount of information that can be acquired from an entire

form submission — is fixed. By reducing this uncertainty as

early as possible, we can be more certain about the values of

later questions. The benefits of stronger certainty about later

questions are two-fold. First, it allows us to more accurately

provide data entry feedback for those questions. Second, we

can more accurately predict missing values for incomplete

form submissions.

We can quantify uncertainty using information entropy. A

question whose random variable has high entropy reflects

greater underlying uncertainty about the responses that ques-

tion can take on. Formally, the entropy of random variable Fi

is given by:

H(Fi) = −
∑

fi

P (fi) log P (fi), (3)

where the sum is over all possible values fi that question Fi

can take on.

As question values are entered for a single form instance,

the uncertainty about remaining questions of that instance

changes. For example, in the race and politics survey, knowing

the respondent’s political party provides strong evidence about

his or her political ideology. We can quantify the amount

of uncertainty remaining in a question Fi, assuming that

other questions G = {F1, . . . , Fn} have been previously

encountered, with its conditional entropy:

H(Fi | G)

= −
∑

g=(f1,...,fn)

∑

fi

P (G = g, Fi = fi) log P (Fi = fi | G = g),

(4)

where the sum is over all possible question responses in

the Cartesian product of F1, . . . , Fn, Fi. Conditional entropy

measures the weighted average of the entropy of question Fj’s

conditional distribution, given every possible assignment of

the previously observed variables. This value is obtained by

performing inference on the Bayesian network to compute the

necessary distributions. By taking advantage of the conditional

independences encoded in the network, we can typically drop

many terms from the conditioning in Equation 4 for faster

computation.4

Our full static ordering algorithm based on greedy infor-

mation gain is presented in Algorithm 1. We select the entire

question ordering in a stepwise manner, starting with the

first question. At the ith step, we choose the question with

the highest conditional entropy, given the questions that have

already been selected. We call this ordering “static” because

the algorithm is run offline, based only on the learned Bayesian

network, and does not change during the actual data entry

session.

In many scenarios the form designer would like to specify

natural groupings of questions that should be presented to

the user as one section. Our model can be easily adapted

to handle this constraint, by maximizing entropy between

specified groups of questions. We can select these groups

4Conditional entropy can also be expressed as the incremental difference in
joint entropy due to Fi, that is, H(Fi | G) = H(Fi,G) − H(G). Writing
out the sum of entropies for an entire form using this expression yields a
telescoping sum that reduces to the fixed value H(F). Thus, this formulation
confirms our previous intuition that no matter what ordering we select, the
total amount of uncertainty is still the same.



according to joint entropy:

arg max
G

H(G | F1, . . . , Fi−1), (5)

where G is over the form designers’ specified groups of ques-

tions. We can then further apply the static ordering algorithm

to order questions within each individual section. In this way,

we capture the highest possible amount of uncertainty while

still conforming to ordering constraints imposed by the form

designer.

Form designers may also want to specify other forms of

constraints on form layout, such as a partial ordering over

the questions that must be respected. The greedy approach

can accommodate such constraints by restricting the choice of

fields at every step to match the partial order.

A. Reordering Questions during Data Entry

In electronic form settings, we can take our ordering notion

a step further, and dynamically reorder questions in a form

as they are entered. This approach can be appropriate for

scenarios when data entry workers input one value at a time,

such as on small mobile devices. We can apply the same

greedy information gain criterion as in Algorithm 1, but update

the calculations with the previous responses in the same form

instance. Assuming questions G = {F1, . . . , Fi} have already

been filled in with values g = {f1, . . . , fn}, the next question

is selected by maximizing:

H(Fi | G = g)

= −
∑

fi

P (Fi = fi | G = g) log P (Fi = fi | G = g). (6)

Notice that this objective is the same as Equation 4, except

using the actual responses entered into previous questions,

rather than taking a weighted average over all possible values.

Constraints specified by the form designer, such as topical

grouping, can also be respected in the dynamic framework by

restricting the selection of next questions at every step.

In general, dynamic reordering can be particularly useful in

scenarios where the input of one value determines the value

of another. For example, in a form with questions for gender

and pregnant, a response of male for the former dictates the

value and potential information gain of the latter. However,

dynamic reordering may be confusing to data entry workers

who routinely enter information into the same form, and have

come to expect a specific question order. Determining the

tradeoff between these opposing concerns is a human factors

issue that depends on both the application domain and the user

interface employed.

VI. QUESTION RE-ASKING

After a form instance is entered, the probabilistic model is

again applied for the purpose of identifying errors made during

entry. Because this determination is made immediately after

form submission, USHER can choose to re-ask questions for

which there may be an error. By focusing the re-asking effort

only on questions that were likely to be mis-entered, USHER is

likely to catch mistakes at a small incremental cost to the data

N

θ
i

α,β F
i

D
iλ R

i

Fi

Fj

Z

z ∈ Z

Fig. 5. A graphical model with explicit error modeling. Here, Di represents
the actual input provided by the data entry worker for the ith question, and
Fi is the true value of that question that we wish to predict. The rectangular
plate around the center variables denotes that those variables are repeated
for each of the N form questions. The F variables are connected by edges
z ∈ Z, representing the relationships discovered in the structure learning
process; this is the same structure used for the question ordering component.
Variable θi represents the “error” distribution, which in our current model
is uniform over all possible values. Variable Ri is a hidden binary indicator
variable specifying whether the entered data was erroneous; its probability λi

is drawn from a Beta prior with fixed hyperparameters α and β.

entry worker. Our approach is a data-driven alternative to the

expensive practice of double entry, where every question is re-

asked — we focus re-asking effort only on question responses

that are unlikely with respect to the other form responses.

USHER estimates contextualized error likelihood for each

question response, i.e., a probability of error that is dependent

on every other field response. The intuition behind error

detection is straightforward: questions whose responses are

“unexpected,” with respect to the rest of the input responses

are more likely to be incorrect.

To formally incorporate this notion, we extend our Bayesian

network from Section IV using a more sophisticated model

that ties together intended and actual question responses.

Specifically, each question is augmented with additional nodes

capturing a probabilistic view of entry error. Under this

new representation, the ith question is represented with the

following set of random variables:

• Fi: the correct value for the question, which is unknown

to the system, and thus a hidden variable.

• Di: the question response provided by the data entry

worker, an observed variable.

• θi: the probability distribution of values that are entered

as mistakes, which is a single fixed distribution per

question. We call θi the error distribution.

• Ri: a binary variable specifying whether an error was

made in this question.

Additionally, we introduce a random variable λ shared across

all questions, specifying how likely errors are to occur for

a typical question of that form submission. Note that the

relationships between field values discovered during structure



learning are still part of the graph, so that error detection is

based on the totality of form responses. We call the Bayesian

network augmented with these additional random variables the

error model.

Within an individual question, the relationships between

the newly introduced variables are shown in Figure 5. Node

Ri ∈ {0, 1} is a hidden indicator variable specifying whether

an error will happen at this question. Our model posits that a

data entry worker implicitly flips a coin for Ri when entering

a response for question i, with probability of one equal to

λ. If Ri = 0, no error occurs and the data entry worker

inputs the correct value for Di, and thus Fi = Di. However,

if Ri = 1, then the data entry worker makes a mistake, and

instead chooses a response for the question from the fixed error

distribution θi. In our present implementation θi is a uniform

distribution over all possible values for question i.5

Formally, the conditional probability distribution of each

random variable is defined as follows. P (Fi | . . .) is still

defined as in Section IV.

Di | Fi, θi, Ri ∼

{

PointMass(Fi) if Ri = 0,

Discrete(θi) otherwise,
(7)

All of Di’s probability is concentrated around Fi (i.e., a point

mass at Fi) if Ri is zero; otherwise its probability distribution

is the error distribution.

Ri | λ ∼ Bernoulli(λ) (8)

Conditioned only on its parent, the probability of making a

mistake in an arbitrary question is the value λ.

λ ∼ Beta(α, β) (9)

The probability of mistake λ is itself an unknown random

variable, so we model its flexibility by defining it as a Beta

distribution, which is a continuous distribution over the real

numbers from zero to one. The Beta distribution takes two

hyperparameters α and β, which we set to fixed constants.

The use of a Beta prior distribution for a Bernoulli random

variable is standard practice in Bayesian modeling, partially

because this combination is mathematically convenient [26].

The ultimate variable of interest in the error model is Ri:

we wish to induce the probability of making an error for each

question, given the actual question responses:

P (Ri | D1, . . . ,Dn). (10)

This probability represents a contextualized error likelihood

due to its dependence on other field values through the

Bayesian network. Again, we can use standard Bayesian

inference procedures to compute this probability. In our im-

plementation, we use the Infer.NET toolkit [22] with the

Expectation Propagation algorithm [27] for this estimation.

5A more precise error model would allow the model to be especially
wary of common mistakes. However, learning such a model is itself a large
undertaking, involving carefully designed user studies with a variety of input
widgets, form layouts, and other interface variations, and a post-hoc labeling
of data that is to be considered in error. This is another area for future work.

Once we have inferred a probability of error for each

question, actually performing the re-asking is a simple matter.

Questions whose error probability estimates exceed a threshold

value, up to a customizable limit, are presented to the data

entry worker for re-entry; if the new value does not match

the previous value, the question is flagged for further manual

reconciliation, as in double entry.

VII. EVALUATION

We evaluated the benefits of USHER by simulating two

data entry scenarios to show how our system can improve

data quality. We focused our evaluation on the quality of our

model and its predictions, factoring out the human-computer

interaction concerns of form widget design by automatically

simulating user entry. As such, we set up experiments to

measure our models’ ability to predict users’ intended answers

and to catch artificially injected errors. We believe that the data

entry user interface can also benefit from value prediction, as

we discuss in Section VIII. We first describe the experimental

data sets, and then present our simulation experiments and

results.

A. Data Sets and Model Setup

We examine the benefits of USHER’s design using two data

sets, previously described in Section III. The survey data set

comprises responses from a 1986 poll about race and politics

in the San Francisco-Oakland metropolitan area [28]. The UC

Berkeley Survey Research Center interviewed 1,113 persons

by random-digit telephone dialing. The patient data set was

collected from anonymized patient intake records at a rural

HIV/AIDS clinic in Tanzania. In total we had fifteen questions

for the survey and nine for the patient data. We discretized

continuous values using fixed-length intervals, and treated the

absence of a response to a question as a separate value to be

predicted.

For both data sets, we randomly divided the available prior

submissions into training and test sets, split 80% to 20%,

respectively. For the survey, we had 891 training instances

and 222 test; for patients, 1,320 training and 330 test. We

performed structure learning and parameter estimation using

the training set. As described in Section IV, the resulting in the

graphical models shown in Figures 1 and 2. The test portion

of each dataset was then used for the data entry scenarios

presented below.

B. Simulation Experiments

In our simulation experiments, we aim to verify hypotheses

regarding two components of our system: first, that our data-

driven question orderings ask the most uncertain questions

first, improving our ability to predict missing responses; and

second, that our re-asking model is able to identify erroneous

responses accurately, so that we can target those questions for

verification.
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Fig. 6. Results of the ordering simulation experiment. In each case, the x-axis measures how many questions are filled before the submission is truncated.
In the charts on the left side, the y-axis plots the average proportion of remaining question whose responses are predicted correctly. In the charts on the right
side, the y-axis plots the proportion of form instances for which all remaining questions are predicted correctly. Results for the survey data are shown at top,
and for the HIV/AIDS data at bottom.

1) Ordering: For the ordering experiment, we posit a

scenario where the data entry worker is interrupted while

entering a form submission, and thus is unable to complete the

entire instance. Our goal is to measure how well we can pre-

dict those remaining questions, under four different question

orderings: USHER’s pre-computed static ordering, USHER’s

dynamic ordering (where the order can adjust in response to

individual question responses), the original form designer’s

ordering, and a random ordering. In each case, predictions

are made by computing the maximum position (mode) of the

probability distribution over un-entered questions, given the

known responses. Results are averaged over each instance in

the test set.

The left-hand graphs of Figure 6 measures the average

number of correctly predicted unfilled questions, as a function

of how many responses the data entry worker did enter before

being interrupted. In each case, the USHER orderings are able

to predict question responses with greater accuracy than both

the original form ordering and a random ordering for most

truncation points. Similar relative performance is exhibited

when we measure the percentage of test set instances where

all unfilled questions are predicted correctly, as shown in the

right side of Figure 6.

The original form orderings tend to underperform their

USHER counterparts. Human form designers typically do not

optimize for asking the most difficult questions first, instead

often focusing on boilerplate material at the beginning of a

form. Such design methodology does not optimize for greedy

information gain.

As expected, between the two USHER approaches, the

dynamic ordering yields slightly greater predictive power than

the static ordering. Because the dynamic approach is able

to adapt the form to the data being entered, it can focus

its question selection on high-uncertainty questions specific

to the current form instance. In contrast, the static approach

effectively averages over all possible uncertainty paths.

2) Re-asking: For the re-asking experiment, our hypothet-

ical scenario is one where the data entry worker enters a

complete form instance, but with erroneous values for some

question responses. Specifically, we assume that for each data

value, the entry worker has some fixed chance p of making a

mistake. When a mistake occurs, we assume that an erroneous

value is chosen uniformly at random. Once the entire instance

is entered, we feed the entered values to our error model, and

compute the probability of error for each question. We then

re-ask the questions with the highest error probabilities, and

measure whether we chose to re-ask the questions that were

actually wrong. Results are averaged over 10 random trials for

each test set instance.

Figure 7 plots the percentage of instances where we chose

to re-ask all of the erroneous questions, as a function of the

number of questions that are re-asked, for error probabilities

of 0.05, 0.1, and 0.2. In each case, our error model is able

to make significantly better choices about which questions to

re-ask than a random baseline. In fact, for p = 0.05, which

is a representative error rate that is observed in the field [7],

USHER successfully re-asks all errors over 80% of the time

within the first three questions in both data sets. We observe

that the traditional approach of double entry corresponds to

re-asking every question; under reasonable assumptions about
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Fig. 7. Results of the re-asking simulation experiment. In each case, the x-axis measures how many questions we are allowed to re-ask, and the y-axis
measures whether we correctly identify all erroneous questions within that number of re-asks. The error probability indicates the rate at which we simulate
errors in the original data. Results for the survey data are shown at top, and for the HIV/AIDS data at bottom.

the occurrence of errors, our model is often able to achieve

the same result as double entry of identifying all erroneous

responses at a substantially reduced cost, in terms of number

of questions asked.

VIII. DISCUSSION: DYNAMIC INTERFACES FOR DATA

ENTRY

In the sections above, we described how USHER uses

statistical information traditionally associated with offline data

cleaning to improve interactive data entry via question or-

dering and re-asking. This raises questions about the human-

computer interactions inherent in electronic form-filling, which

are typically device- and application-dependent. For example,

in one of our applications, we are interested in how data

quality interactions play out on mobile devices in developing

countries, as in the Tanzanian patient forms we examined

above. But similar questions arise in traditional online forms

like web surveys. In this section we outline some broad design

considerations that arise from the probabilistic power of the

models and algorithms in USHER. We leave the investigation

of specific interfaces and their evaluation in various contexts

to future work.

While an interactive USHER-based interface is presenting

questions (either one-by-one or in groups), it can infer a

probability for each possible answer to the next question; those

probabilities are “contextualized” (conditioned) by previous

answers. The resulting quantitative probabilities can be ex-

posed to users in different manners and at different times. We

taxonomize some of these design options as follows:

1) Time of exposure: friction and assessment. The prob-

ability of an answer can be exposed in an interface

before the user chooses their answer. This can be done

to improve data entry speed by adjusting the friction of

entering different answers: likely results become easy

or attractive to enter, while unlikely results require

more work. Examples of data-driven variance in friction

include type-ahead mechanisms in textfields, “popular

choice” items repeated at the top of drop-down lists,

and direct decoration (e.g. coloring or font-size) of each

choice in accordance with its probability. A downside

of beforehand exposure of answer probabilities is the

potential to bias answers. Alternatively, probabilities

may be exposed in the interface only after the user

selects an answer. This becomes a form of assessment

— for example, by flagging unlikely choices as potential

outliers. This assessment can be seen as a soft proba-

bilistic version of the constraint violation visualizations

commonly found in web forms (e.g. the red star that

often shows up next to forbidden or missing entries).

Post-hoc assessment arguably has less of a biasing affect

than friction. This is both because users choose initial

answers without knowledge of the model’s predictions,

and because users may be less likely to modify previous

answers than they would be to change their minds before

entry.

2) Explicitness of exposure: Feedback mechanisms in



Fig. 8. Mockups of some simple dynamic data entry widgets illustrating various design options.

adaptive interfaces vary in terms of how explicitly

they intervene in the user’s task. Adaptations can be

considered elective versus mandatory. For instance, a

drop-down menu with items sorted based on likelihood

is mandatory with a high level of friction; whereas, a

“split” drop-down menu, as mentioned above, is elective

— the user can choose to ignore the popular choices.

Another important consideration is the cognitive com-

plexity of the feedback. For instance, when encoding

expected values into a set of radio buttons, we can

directly show the numeric probability of each choice,

forcing a user to interpret numbers. Alternatively, we

can scale the opacity of answer labels — giving the

user an indication of relative salience, without the need

for quantitative interpretation. Even more subtly, we

can dynamically adjust the invisible size of answer

labels’ clickable regions according to its likelihood —

introducing an almost imperceptible form of adaptive

guidance.

3) Contextualization of interface: USHER correctly uses

conditional probabilities to assess the likelihood of

subsequent answers. However, this is not necessarily

intuitive to a user. For example, consider a question

asking for “favorite beverage,” where the most likely

answers shown are “milk” and “apple juice.” This might

be surprising in the abstract, but would be less so in a

case where a previous question had identified the age of

the person in question to be under 5 years. The way that

the interface communicates the context of the current

probabilities is an interesting design consideration. For

example, “type-ahead” text interfaces have this flavor,

showing the likely suffix of a word contextualized by

the previously-entered prefix. More generally, USHER

makes it possible to show a history of the already-

entered answers to questions that correlate highly with

the value at hand.

Note that these design properties are not specifically tied

to any particular interface widgets, nor do they necessarily

motivate new interface technologies. In Figure 8 we show

some crude examples of the ideas of USHER embedded into

traditional widgets: the drop-down menu in part A features first

an elective split-menu adaptation before entry, and a color-

encoded value assessment after entry; the textfield in part

B shows type-ahead suggestions ordered by likelihood, thus

decreasing the physical distance (a form of friction) for more-

likely values; the radio buttons in part C directly communicate

quantitative probabilities to the user.

While these broad design properties help clarify the poten-

tial user experience benefits of USHER’s data-driven philoso-

phy, there are clearly many remaining questions about how to

do this embedding well for different settings and users. Those

questions are beyond the scope of this paper. In future work we

intend to pursue them via a few different scenarios — notably,

in a repetitive data entry program supporting rural health care

in East Africa, and in a web survey — via controlled user

studies.



IX. SUMMARY AND FUTURE WORK

In this paper, we have shown that probabilistic approaches

can be used to design intelligent data entry forms that promote

high data quality. USHER leverages data-driven insights to

automate multiple steps in the data entry pipeline. Before

entry, we find an ordering of form fields that promotes rapid

information capture, driven by a greedy information gain prin-

ciple. During entry, we use the same principle to dynamically

adapt the form based on entered values. After entry, we

automatically identify possibly erroneous inputs, guided by

contextualized error likelihood, and re-ask those questions to

verify their correctness. Our empirical evaluations demonstrate

the data quality benefits of each of these components: question

ordering allows better prediction accuracy and the re-asking

model identifies erroneous responses effectively.

There are a variety of ways in which this work can be ex-

tended. A major piece of future work alluded to in Section VIII

is to study how our probabilistic model can inform effective

adaptations of the user interface during data entry. We intend

to answer this problem in greater depth with user studies and

field deployments of our system.

On the modeling side, our current probabilistic approach

assumes that every question is discrete and takes on a series

of unrelated values. Relaxing these assumptions would make

for a richer and potentially more accurate predictive model for

many domains. Additionally, we want to consider models that

reflect temporal changes in the underlying data. Our present

error model makes strong assumptions both about how errors

are distributed, and what errors look like. On that front, an

interesting line of future work would be to learn a model of

data entry errors and adapt our system to catch them.

Finally, we plan to measure the practical impact of our

system, by piloting USHER with our field partners, the

United Nations Development Program’s Millennium Villages

Project [29] in Uganda, and a community health care program

in Tanzania. These organizations’ data quality concerns were

the original motivation for this work, and thus serve as an

important litmus test for our system.
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