
Online Aggregation and Continuous Query support in
MapReduce

Tyson Condie, Neil Conway, Peter Alvaro, Joseph M. Hellerstein
UC Berkeley

John Gerth, Justin Talbot
Stanford University

Khaled Elmeleegy, Russell Sears
Yahoo! Research

ABSTRACT
MapReduce is a popular framework for data-intensive distributed
computing of batch jobs. To simplify fault tolerance, the output of
each MapReduce task and job ismaterializedto disk before it is
consumed. In this demonstration, we describe a modified MapRe-
duce architecture that allows data to bepipelinedbetween oper-
ators. This extends the MapReduce programming model beyond
batch processing, and can reduce completion times and improve
system utilization for batch jobs as well. We demonstrate a mod-
ified version of the Hadoop MapReduce framework that supports
online aggregation, which allows users to see “early returns” from
a job as it is being computed. Our Hadoop Online Prototype (HOP)
also supportscontinuous queries, which enable MapReduce pro-
grams to be written for applications such as event monitoring and
stream processing. HOP retains the fault tolerance properties of
Hadoop, and can run unmodified user-defined MapReduce pro-
grams.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous; D.2.11
[Software Architectures]: Data abstraction

General Terms
Design

1. INTRODUCTION
MapReduce has emerged as a popular way to harness the power

of large clusters of computers. MapReduce allows programmers to
think in adata-centricfashion: they focus on applying transforma-
tions to sets of data records, and allow the details of distributed ex-
ecution, network communication, coordination and fault tolerance
to be handled by the MapReduce framework.

The MapReduce model is typically applied to large batch-oriented
computations that are concerned primarily with time to job com-
pletion. The Google MapReduce framework [4] and open-source
Hadoop system reinforce this usage model through a batch-processing
implementation strategy: the entire output of each map and reduce

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’10,June 6–11, 2010, Indianapolis, Indiana, USA.
Copyright 2010 ACM 978-1-4503-0032-2/10/06 ...$10.00.

stage ismaterializedto stable storage before it can be consumed by
the next stage, or produce output. Batch materialization allows for
a simple and elegant checkpoint/restart fault tolerance mechanism
that is critical in large deployments, which have a high probability
of slowdowns or failures at worker nodes.

We propose a modified MapReduce architecture in which in-
termediate data ispipelinedbetween operators, while preserving
the programming interfaces and fault tolerance models of previous
MapReduce frameworks. To validate this design, we developed
the Hadoop Online Prototype (HOP) [3], a pipelining versionof
Hadoop.

Pipelining provides several important advantages to a MapRe-
duce framework, but also raises new design challenges. We high-
light the potential advantages first:

• A downstream dataflow element can begin consuming data
before a producer element has finished execution, which can
increase opportunities for parallelism, improve utilization,
and reduce response time.

• Since reducers begin processing data as soon as it is produced
by mappers, they can generate and refine an approximation
of their final answer during the course of execution. This
technique, known asonline aggregation[6], can reduce the
turnaround time for data analysis by several orders of mag-
nitude. We describe our demonstration of online aggregation
using our pipelined MapReduce architecture in Section 4.1.1.

• Pipelining widens the domain of problems to which MapRe-
duce can be applied. In Section 4.2.1, we describe a system
monitoring tool written as a MapReduce job that leverages
HOP’s support ofcontinuous queries: MapReduce jobs that
run continuously, accepting new data as it arrives and ana-
lyzing it immediately.

Pipelining raises several design challenges that we describe in
this the demonstration. First, Google’s attractively simple MapRe-
duce fault tolerance mechanism is predicated on the materialization
of intermediate state. We show that this can coexist with pipelin-
ing, by allowing producers to periodically ship data to consumers
in parallel with their materialization. A second challengearises
from the greedy communication implicit in pipelines, whichis at
odds with batch-oriented optimizations supported by “combiners”:
map-side code that reduces network utilization by performing com-
pression and pre-aggregation before communication. We discuss
how the HOP design addresses this issue. Finally, pipelining re-
quires that producers and consumers are co-scheduled intelligently;
we describe our initial work on this issue.

2. BACKGROUND
MapReduce is a programming model for performing transforma-

tions on large data sets [4]. In this section, we review the MapRe-
duce programming model, and describe the salient features of Hadoop,
a popular open-source implementation of MapReduce.

2.1 Programming Model
To use MapReduce, the programmer expresses their desired com-

putation as a series ofjobs. The input to a job is a list ofrecords
(key-value pairs). Each job consists of two steps: first, a user-
definedmapfunction is applied to each record to produce a list of
intermediate key-value pairs. Second, a user-definedreducefunc-
tion is called once for each distinct key in the map output, and
passed the list of intermediate values associated with thatkey. The
MapReduce framework automatically parallelizes the execution of
these functions, and ensures fault tolerance.

2.2 Hadoop Architecture
Hadoop is composed ofHadoop MapReduce, an implementa-

tion of MapReduce designed for large clusters, and theHadoop
Distributed File System(HDFS), a file system optimized for batch-
oriented workloads such as MapReduce. In most Hadoop jobs,
HDFS is used to store both the input to the map step and the output
of the reduce step.

The Hadoop MapReduce architecture consists of a single master
node and many worker nodes. The master, called theJobTracker, is
responsible for accepting jobs from clients, dividing those jobs into
tasks, and assigning those tasks to be executed by worker nodes.
Each worker runs aTaskTrackerprocess that manages the execution
of the tasks currently assigned to that node. Each TaskTracker has
a fixed number of slots for executing tasks (two maps and two re-
duces by default). A heartbeat protocol between each TaskTracker
and the JobTracker is used to update the JobTracker’s bookkeeping
of the state of running tasks, and drive the scheduling of newtasks:
if the JobTracker identifies free TaskTracker slots, it willschedule
further tasks on the TaskTracker.

2.3 Map Task Execution
Each map task is assigned a portion of the input file called a

split. By default, a split contains a single HDFS block (64MB by
default), so the size of the input file determines the number of map
tasks.

The execution of a map task is divided into two phases. The
mapphase reads the task’s split from HDFS, parses it into records
(key/value pairs), and applies the map function to each record. Af-
ter the map function has been applied to each input record, the
commitphase registers the final output with the TaskTracker, which
then informs the JobTracker that the task has finished executing.

After a map task has applied the map function to each input
record, it enters thecommitphase. To generate the task’s final out-
put, an in-memory buffer is flushed to disk, and all of the spill files
generated during the map phase are merge sorted into a singledata
file. The final output file is registered with the TaskTracker before
the task completes. The TaskTracker will read these files when ser-
vicing requests from reduce tasks.

2.4 Reduce Task Execution
The execution of a reduce task is divided into three phases. The

shufflephase fetches the reduce task’s input data. Each reduce task
is assigned a partition of the key range produced by the map step, so
the reduce task must fetch the content of this partition fromevery
map task’s output. Thesortphase groups records with the same key

together. Thereducephase applies the user-defined reduce function
to each key and corresponding list of values.

In the shufflephase, a reduce task fetches data from each map
task by issuing HTTP requests to a configurable number of Task-
Trackers at once (5 by default). The JobTracker relays the loca-
tion of every TaskTracker that hosts map output to every Task-
Tracker that is executing a reduce task. In traditional batch-oriented
Hadoop, a reduce task cannot fetch the output of a map task until
the map has finished executing and committed its final output to
disk.

After receiving its partition from all map outputs, the reduce task
enters thesort phase. The map output for each partition is already
sorted by key. The reduce task merges these runs together to pro-
duce a single run that is sorted by the key. The task then enters the
reducephase, in which it invokes the user-defined reduce function
for each distinct key in sorted order, passing it the associated list
of values. The output of the reduce function is written to a tempo-
rary location on HDFS. After the reduce function has been applied
to each key in the reduce task’s partition, the task’s HDFS output
file is atomically renamed from its temporary location to itsfinal
location.

3. PIPELINED MAPREDUCE
In this section we discuss our extensions to Hadoop to support

pipelining between tasks (Section 3.1) and between jobs (Section 3.2).
We describe how our design supports fault tolerance (Section 3.3),
and discuss the interaction between pipelining and task scheduling
(Section 3.4).

3.1 Pipelining Within A Job
In the stock version of Hadoop MapReduce, reduce tasks gather

map outputs by issuing HTTP get requests to nodes that hostedthe
execution of a map task belonging to the same job. The reduce task
does not issue this request until it has received notification that the
map task has completed and its final output has been committedto
disk. This means that map task execution is completely decoupled
from reduce task execution. To support pipelining within a single
MapReduce job, we modified the map task to insteadpushdata to
reducers as it is produced.

A challenge that we faced in our pipelined architecture was choos-
ing the right granularity for transferring data from mappers to re-
ducers. A naïve design that eagerly sends each record as soonas
it is produced prevents the use of map-side combiners. Imagine a
job where the reduce key has few distinct values (e.g., gender), and
the reduce applies an aggregate function (e.g., count). Combiners
allow map-side “pre-aggregation”: by applying a reduce-like func-
tion to each distinct key at the mapper, network traffic can often be
substantially reduced.

A related problem is that eager pipelining moves some of the
sorting work from the mapper to the reducer. Recall that in the
blocking architecture, map tasks generate sorted output: all the re-
duce task must do is merge together the pre-sorted map outputfor
each partition. In the eager pipelining design, map tasks send out-
put records in the order in which they are generated, so the reducer
must perform a full external sort. Because the number of map tasks
typically far exceeds the number of reduces [4], moving morework
to the reducer can degrade performance.

We addressed these issues by buffering the mapper output until
it reaches a certain record threshold. When the record threshold is
reached, the mapper sorts and applies the combiner functionto the
buffer, sending the output to a spill file. Next, we arranged for the
TaskTracker at each node to handle pipelining data to reducetasks.
Map tasks register spill files with the TaskTracker via RPCs.If the

reducers are able to keep up with the production of map outputs and
the network is not a bottleneck, a spill file will be sent to a reducer
soon after it has been produced (in which case, the spill file is likely
still resident in the map machine’s kernel buffer cache). However,
if a reducer begins to fall behind, the number of unsent spillfiles
will grow.

When a map task generates a new spill file, it first queries the
TaskTracker for the number of unsent spill files. If this number
grows beyond a certain threshold (two unsent spill files in our ex-
periments), the map task does not immediately register the new
spill file with the TaskTracker. Instead, the mapper will accumulate
multiple spill files. Once the queue of unsent spill files falls below
the threshold, the map task merges and combines the accumulated
spill files into a single file, and then resumes registering its output
with the TaskTracker. This simple flow control mechanism hasthe
effect ofadaptivelymoving load from the reducer to the mapper or
vice versa, depending on which node is the current bottleneck.

A similar mechanism is also used to control how aggressively
the combiner function is applied. The map task records the ratio
between the input and output data sizes whenever it invokes the
combiner function. If the combiner is effective at reducingdata
volumes, the map task accumulates more spill files (and applies the
combiner function to all of them) before registering that output with
the TaskTracker for pipelining.

The connection between pipelining and adaptive query process-
ing techniques has been observed elsewhere (e.g., [1]). Theadap-
tive scheme outlined above is relatively simple, but we believe that
adapting to feedback along pipelines has the potential to signifi-
cantly improve the utilization of MapReduce clusters.

3.2 Pipelining Between Jobs
Many practical computations cannot be expressed as a single

MapReduce job, and the outputs of higher-level languages like Pig [7]
typically involve multiple jobs. In the traditional Hadooparchitec-
ture, the output of each job is written to HDFS in the reduce step,
and then immediately read back from HDFS by the map step of the
next job. In fact, a client (e.g., Pig) cannot even schedule acon-
sumer job until the producer job has completed, because schedul-
ing a map task requires knowing the HDFS block locations of the
map’s input split.

In our modified version of Hadoop, the reduce tasks of one job
can optionally pipeline their output directly to the map tasks of the
next job, sidestepping the need for expensive fault-tolerant storage
in HDFS for what amounts to a temporary file. In stock Hadoop
the computation of the reduce function from the previous joband
the map function of the next job cannot be overlapped: the final re-
sult of the reduce step cannot be produced until all map taskshave
completed, which prevents effective pipelining. However,HOP
supports early returns of reducer output, which enables online ag-
gregation and continuous query pipelines. This new functionality
will be the focus of our demonstration.

3.3 Fault Tolerance
Our pipelined Hadoop implementation is robust to the failure of

both map and reduce tasks. To recover from map task failures,we
added bookkeeping to the reduce task to record which map task
produced each pipelined spill file. To simplify fault tolerance, the
reducer treats the output of a pipelined map task as “tentative” until
the JobTracker informs the reducer that the map task has committed
successfully. The reducer can merge together spill files generated
by the same uncommitted mapper, but will not combine those spill
files with the output of other map tasks until it has been notified that
the map task has committed. Thus, if a map task fails, each reduce

task can ignore any tentative spill files produced by the failed map
attempt. The JobTracker will take care of scheduling a new map
task attempt, as in stock Hadoop.

If a reduce task fails and a new copy of the task is started, thenew
reduce instance must be sent all the input data that was sent to the
failed reduce attempt. If map tasks operated in a purely pipelined
fashion and discarded their output after sending it to a reducer, this
would be difficult. Therefore, map tasks retain their outputdata on
the local disk for the complete job duration. This allows themap’s
output to be reproduced if any reduce tasks fail. For batch jobs, the
key advantage of our architecture is that reducers are not blocked
waiting for the complete output of the task to be written to disk.

Our technique for recovering from map task failure is straightfor-
ward, but places a minor limit on the reducer’s ability to merge spill
files. To avoid this, we envision introducing a “checkpoint”con-
cept: as a map task runs, it will periodically notify the JobTracker
that it has reached offsetx in its input split. The JobTracker will
notify any connected reducers; map task output that was produced
before offsetx can then be merged by reducers with other map
task output as normal. To avoid duplicate results, if the maptask
fails, the new map task attempt resumes reading its input at off-
setx. This technique would also reduce the amount of redundant
work done after a map task failure or during speculative execution
of “backup” tasks [4].

3.4 Task Scheduling
The Hadoop JobTracker had to be retrofitted to support pipelin-

ing between jobs. In regular Hadoop, job are submitted one ata
time; a job that consumes the output of one or more other jobs
cannot be submitted until the producer jobs have completed.To
address this, we modified the Hadoop job submission interface to
accept a list of jobs, where each job in the list depends on thejob
before it. The client interface traverses this list, annotating each
job with the identifier of the job that it depends on. The Job-
Tracker looks for this annotation and co-schedules jobs with their
dependencies, giving slot preference to “upstream” jobs over the
“downstream” jobs they feed. There are many interesting options
for scheduling pipelines or even DAGs of such jobs that we plan to
investigate in future.

4. HOP DEMONSTRATION
Our pipelined implementation of Hadoop enables two new fea-

tures to the MapReduce model. In this section we provide a short
description of these features along with a description of our demon-
stration of these features.

4.1 Online Aggregation
Although MapReduce was originally designed as a batch-oriented

system, it is often used for interactive data analysis: a user submits
a job to extract information from a data set, and then waits toview
the results before proceeding with the next step in the data analysis
process. This trend has accelerated with the development ofhigh-
level query languages that are executed as MapReduce jobs, such
as Hive [10], Pig [7], and Sawzall [8].

Traditional MapReduce implementations provide a poor inter-
face for interactive data analysis, because they do not emitany out-
put until the job has been executed to completion. However, in
many cases, an interactive user would prefer a “quick and dirty”
approximation over a correct answer that takes much longer to
compute. In the database literature, online aggregation has been
proposed to address this problem [6], but the batch-oriented nature
of traditional MapReduce implementations makes these techniques
difficult to apply. In this demonstration, we will show how weex-

tended our pipelined Hadoop implementation to support online ag-
gregation within a single job and between multiple jobs. We will
visually demonstrate that online aggregation has a minimalimpact
on job completion times, and can often yield an accurate approxi-
mate answer long before the job has finished executing.

4.1.1 Demonstration
We demonstrate online aggregation in HOP using a data set con-

taining seven months of hourly page view statistics for morethan
2.5 million Wikipedia articles [9]. This data set is comprised of
320GB of compressed data (1TB uncompressed) that is divided
into 5066 compressed files. The demonstration query counts the
total number of page views for each language and each hour of the
day. In other words, the query groups by language and hour of day,
and sums the number of page views that occur in each group. The
demonstration will show early results that are nearly accurate to the
final answer in orders of magnitude less time.

4.2 Continuous Queries
MapReduce is often used to analyze streams of constantly-arriving

data, such as URL access logs [4] and system console logs [11].
Because of traditional constraints on MapReduce, this is done in
large batches that can only provide periodic views of activity. This
introduces significant latency into a data analysis processthat ide-
ally should run in near-real time. It is also potentially inefficient:
each new MapReduce job does not have access to the computa-
tional state of the last analysis run, so this state must be recomputed
from scratch. The programmer can manually save the state of each
job and then reload it for the next analysis operation, but this is
labor-intensive.

Our pipelined version of Hadoop allows an alternative architec-
ture: MapReduce jobs that runcontinuously, accepting new data as
it becomes available and analyzing it immediately. This allows for
near-real-time analysis of data streams, and thus allows the MapRe-
duce programming model to be applied to domains such as environ-
ment monitoring and real-time fraud detection.

4.2.1 Demonstration
In this demonstration, we will show how HOP supports contin-

uous MapReduce jobs, and visually demonstrate this featurewith
an implementation of cluster monitoring tool written as a contin-
uous MapReduce query. The input data stream will be real-time
system statistics and log feeds. We envision a facility where both
cluster operations staff and users have access to displays of key
performance metrics about the processing, disk access, andcom-
munications within the cluster in order to better understand both
the cluster status as well as the progress of individual MapReduce
jobs.

The monitoring tool is written in Protovis [2], which allowsus
to create interactive, animated, and data rich displays in an ordi-
nary web browser without requiring a plug-in. Clients connect to a
server which is accepting the output of the continuous query. Each
client’s web browser subscribes to the set of feeds it is interested in
and visualizes the resulting data.

The overall design permits both drill-down and roll-up of infor-
mation. There is a navigational display from which the user can
select displays in two different perspectives. In the first perspec-
tive, data feeds are available for various levels of aggregation of the
cluster resources (e.g., cluster, rack, machine). In the second, the
orientation is to the progress of MapReduce jobs executing in the
same cluster. In either perspective, displays may be annotated by
reports of faults which can be expanded to reveal more detail.

5. CONCLUSION
MapReduce has proven to be a popular model for large-scale

parallel programming. Our Hadoop Online Prototype extendsthe
applicability of the model to pipelining behaviors, while preserv-
ing the simple programming model and fault tolerance of a full-
featured MapReduce framework. HOP provides significant new
functionality, including “early returns” on long-runningjobs via
online aggregation, and continuous queries over streamingdata. As
a more long-term agenda, we want to explore using MapReduce-
style programming for even more interactive applications.As a first
step, we hope to revisit interactive data processing in the spirit of
the CONTROL work [5], with an eye toward improved scalability
via parallelism.

6. REFERENCES
[1] R. Avnur and J. M. Hellerstein. Eddies: Continuously

adaptive query processing. InSIGMOD, pages 261–272,
2000.

[2] M. Bostock and J. Heer. Protovis: A graphical toolkit for
visualization.IEEE Transactions on Visualization and
Computer Graphics, 15(6):1121–1128, 2009.

[3] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein,
K. Elmeleegy, and R. Sears. Mapreduce online. InNSDI,
2010.

[4] J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. InOSDI, pages 137–150, 2004.

[5] J. M. Hellerstein, R. Avnur, A. Chou, C. Hidber, C. Olston,
V. Raman, T. Roth, and P. J. Haas. Interactive data analysis
with CONTROL.IEEE Computer, 32(8), Aug. 1999.

[6] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online
aggregation. InSIGMOD, pages 171–182, 1997.

[7] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig Latin: a not-so-foreign language for data
processing. InSIGMOD, 2008.

[8] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan.
Interpreting the data: Parallel analysis with Sawzall.
Scientific Programming, 13(4):277–298, 2005.

[9] P. N. Skomoroch. Wikipedia page traffic statistics, 2009.
[10] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,

S. Anthony, H. Liu, P. Wyckoff, and R. Murthy. Hive — a
warehousing solution over a map-reduce framework. In
VLDB, 2009.

[11] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan.
Detecting large-scale system problems by mining console
logs. InSOSP, 2009.

