Online Aggregation and Continuous Query support in
MapReduce

Tyson Condie, Neil Conway, Peter Alvaro, Joseph M. Hellerstein

UC Berkeley
John Gerth, Justin Talbot Khaled Elmeleegy, Russell Sears
Stanford University Yahoo! Research
ABSTRACT stage isnaterializedo stable storage before it can be consumed by

the next stage, or produce output. Batch materializatitmvalfor
a simple and elegant checkpoint/restart fault tolerancehar@sm
that is critical in large deployments, which have a high pialtity

MapReduce is a popular framework for data-intensive disted
computing of batch jobs. To simplify fault tolerance, theypui of
each MapReduce task and jobnmeterializedto disk before it is ;
consumed. In this demonstration, we describe a modified MapR of slowdowns or fa||ur§§ atworker nodes. . . L
duce architecture that allows data to fipelined between oper- We propose a ”.’Od!f'ed MapReduce archltectu.re n Whlch n-
ators. This extends the MapReduce programming model beyondtermecjlate da_ta |§|pellned between operators, while preserving
batch processing, and can reduce completion times and ve@pro the programming interfaces and fgult tolerance rnodelsmﬂpus
system utilization for batch jobs as well. We demonstrateod-m MapReduce frameworks. To validate this de_5|g_n,_ we dev_ellope
ified version of the Hadoop MapReduce framework that sugport the Hadoop Online Prototype (HOP) [3], a pipelining versain
online aggregationwhich allows users to see “early returns” from Had_oop. . . .

ajob asitis being computed. Our Hadoop Online Prototyf@F) Pipelining provides Se"e“?" Important a}dvantages toa MapR
also supportsontinuous querigswhich enable MapReduce pro- ‘?'UCG framewor.k, but also raises new design challenges. g¥e hi
grams to be written for applications such as event monigoaind light the potential advantages first:

stream processing. HOP retains the fault tolerance piiepeot
Hadoop, and can run unmodified user-defined MapReduce pro-
grams.

e A downstream dataflow element can begin consuming data
before a producer element has finished execution, which can
increase opportunities for parallelism, improve utiliaat

. . . and reduce response time.

Categories and Subject Descriptors P

H.4 [Information Systems Applications|: Miscellaneous; D.2.11

[Software Architectures]: Data abstraction e Since reducers begin processing data as soon as itis pwbduce

by mappers, they can generate and refine an approximation
of their final answer during the course of execution. This
General Terms technique, known asnline aggregatior{6], can reduce the
turnaround time for data analysis by several orders of mag-
nitude. We describe our demonstration of online aggregatio
1. INTRODUCTION using our pipelined MapReduce architecture in Sectiori4.1.

Design

MapReduce has emerged as a popular way to harness the power
of large clusters of computers. MapReduce allows prograrsihoe
think in adata-centricfashion: they focus on applying transforma-
tions to sets of data records, and allow the details of disted ex-
ecution, network communication, coordination and faukrtance
to be handled by the MapReduce framework.

The MapReduce model is typically applied to large batcleragd
computations that are concerned primarily with time to jolne
pletion. The Google MapReduce framework [4] and open-sourc
Hadoop system reinforce this usage model through a batudegsing
implementation strategy: the entire output of each map aeddae

e Pipelining widens the domain of problems to which MapRe-
duce can be applied. In Section 4.2.1, we describe a system
monitoring tool written as a MapReduce job that leverages
HOP’s support ofontinuous queriesMapReduce jobs that
run continuously, accepting new data as it arrives and ana-
lyzing it immediately.

Pipelining raises several design challenges that we dsari
this the demonstration. First, Google’s attractively dendapRe-
duce fault tolerance mechanism is predicated on the mhkzatian
of intermediate state. We show that this can coexist witlelpip
ing, by allowing producers to periodically ship data to aaners
in parallel with their materialization. A second challenggses
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personal or classroom use is granted without fee providatabpies are odds with batch-oriented optimizations supported by “cirais”:
not made or distributed for profit or commercial advantage that copies map-side code that reduces network utilization by perfoggiom-
bear this notice and the full citation on the first page. Toycoherwise, to pression and pre-aggregation before communication. Waisks
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2. BACKGROUND

MapReduce is a programming model for performing transferma
tions on large data sets [4]. In this section, we review th@R&:
duce programming model, and describe the salient featfiréadmop,
a popular open-source implementation of MapReduce.

2.1 Programming M odel

To use MapReduce, the programmer expresses their desired co
putation as a series ¢dbs The input to a job is a list ofecords
(key-value pairs). Each job consists of two steps: first, er-us
definedmapfunction is applied to each record to produce a list of
intermediate key-value pairs. Second, a user-defieddcefunc-
tion is called once for each distinct key in the map output] an
passed the list of intermediate values associated wittkéhyatThe
MapReduce framework automatically parallelizes the etiecof
these functions, and ensures fault tolerance.

2.2 Hadoop Architecture

Hadoop is composed dfladoop MapRedugean implementa-
tion of MapReduce designed for large clusters, andHaedoop
Distributed File SystertHDFS), a file system optimized for batch-

oriented workloads such as MapReduce. In most Hadoop jobs,

HDFS is used to store both the input to the map step and theioutp
of the reduce step.

The Hadoop MapReduce architecture consists of a singleemast
node and many worker nodes. The master, calledab&rackeris
responsible for accepting jobs from clients, dividing #a@sbs into

together. Theeducephase applies the user-defined reduce function
to each key and corresponding list of values.

In the shufflephase, a reduce task fetches data from each map
task by issuing HTTP requests to a configurable number of-Task
Trackers at once (5 by default). The JobTracker relays tba-lo
tion of every TaskTracker that hosts map output to every -Task
Tracker that is executing a reduce task. In traditionaltbattented
Hadoop, a reduce task cannot fetch the output of a map tagk unt
the map has finished executing and committed its final output t
disk.

After receiving its partition from all map outputs, the reduask
enters thesort phase. The map output for each partition is already
sorted by key. The reduce task merges these runs togethes-to p
duce a single run that is sorted by the key. The task thenttiter
reducephase, in which it invokes the user-defined reduce function
for each distinct key in sorted order, passing it the assedifist
of values. The output of the reduce function is written torafie-
rary location on HDFS. After the reduce function has beeriegp
to each key in the reduce task’s partition, the task’s HDFpuiu
file is atomically renamed from its temporary location tofitsl
location.

3. PIPELINED MAPREDUCE

In this section we discuss our extensions to Hadoop to stippor
pipelining between tasks (Section 3.1) and between jobi(Be3.2).
We describe how our design supports fault tolerance (Seétig),
and discuss the interaction between pipelining and taskdsdimg

tasks and assigning those tasks to be executed by worker nodes.(S€ction 3.4).

Each worker runs daskTrackeprocess that manages the execution
of the tasks currently assigned to that node. Each Taskérduds

a fixed number of slots for executing tasks (two maps and two re
duces by default). A heartbeat protocol between each Task&r
and the JobTracker is used to update the JobTracker’s bepiig

of the state of running tasks, and drive the scheduling of tasks:

if the JobTracker identifies free TaskTracker slots, it wdhedule
further tasks on the TaskTracker.

2.3 Map Task Execution

Each map task is assigned a portion of the input file called a
split. By default, a split contains a single HDFS block (64MB by
default), so the size of the input file determines the numbarap
tasks.

The execution of a map task is divided into two phases. The
mapphase reads the task’s split from HDFS, parses it into racord
(key/value pairs), and applies the map function to eachrdecsf-
ter the map function has been applied to each input recosl, th
commitphase registers the final output with the TaskTracker, which
then informs the JobTracker that the task has finished exgcut

After a map task has applied the map function to each input
record, it enters theommitphase. To generate the task’s final out-
put, an in-memory buffer is flushed to disk, and all of theldjpéds
generated during the map phase are merge sorted into a datigle
file. The final output file is registered with the TaskTrackefdoe
the task completes. The TaskTracker will read these fileswsbe
vicing requests from reduce tasks.

2.4 Reduce Task Execution

The execution of a reduce task is divided into three phases. T

3.1 Pipeining Within A Job

In the stock version of Hadoop MapReduce, reduce tasksigathe
map outputs by issuing HTTP get requests to nodes that httsted
execution of a map task belonging to the same job. The recdske t
does not issue this request until it has received notifinatiat the
map task has completed and its final output has been comrutted
disk. This means that map task execution is completely g#edu
from reduce task execution. To support pipelining withirrge
MapReduce job, we modified the map task to insteashdata to
reducers as it is produced.

A challenge that we faced in our pipelined architecture vha®s-
ing the right granularity for transferring data from mappéo re-
ducers. A naive design that eagerly sends each record asasoon
it is produced prevents the use of map-side combiners. Imaagi
job where the reduce key has few distinct values (e.g., ggrated
the reduce applies an aggregate function (e.g., count). b@mrs
allow map-side “pre-aggregation”: by applying a reduée-func-
tion to each distinct key at the mapper, network traffic caarobe
substantially reduced.

A related problem is that eager pipelining moves some of the
sorting work from the mapper to the reducer. Recall that & th
blocking architecture, map tasks generate sorted outfiuheare-
duce task must do is merge together the pre-sorted map dotput
each partition. In the eager pipelining design, map taskd set-
put records in the order in which they are generated, so theces
must perform a full external sort. Because the number of rasigst
typically far exceeds the number of reduces [4], moving mawek
to the reducer can degrade performance.

We addressed these issues by buffering the mapper output unt
it reaches a certain record threshold. When the recordhbiesés

shufflephase fetches the reduce task’s input data. Each reduce taskeached, the mapper sorts and applies the combiner furtctite

is assigned a partition of the key range produced by the neap s
the reduce task must fetch the content of this partition femery
map task’s output. Theortphase groups records with the same key

buffer, sending the output to a spill file. Next, we arrangeditiie
TaskTracker at each node to handle pipelining data to reidsés.
Map tasks register spill files with the TaskTracker via RPICthe



reducers are able to keep up with the production of map osignd
the network is not a bottleneck, a spill file will be sent to dueer
soon after it has been produced (in which case, the spilkfiigely
still resident in the map machine’s kernel buffer cache)weler,
if a reducer begins to fall behind, the number of unsent §ipéi$
will grow.

task can ignore any tentative spill files produced by theéarhap
attempt. The JobTracker will take care of scheduling a newy ma
task attempt, as in stock Hadoop.

If areduce task fails and a new copy of the task is startedete
reduce instance must be sent all the input data that wascsére t
failed reduce attempt. If map tasks operated in a purelylipipe

When a map task generates a new spill file, it first queries the fashion and discarded their output after sending it to acedhis

TaskTracker for the number of unsent spill files. If this nemb
grows beyond a certain threshold (two unsent spill files ineu
periments), the map task does not immediately register ¢ue n
spill file with the TaskTracker. Instead, the mapper willaoelate
multiple spill files. Once the queue of unsent spill filesfdlelow
the threshold, the map task merges and combines the acdedhula
spill files into a single file, and then resumes registeria@iitput
with the TaskTracker. This simple flow control mechanism thas
effect ofadaptivelymoving load from the reducer to the mapper or
vice versa, depending on which node is the current bottlenec

A similar mechanism is also used to control how aggressively
the combiner function is applied. The map task records ttie ra
between the input and output data sizes whenever it invdies t
combiner function. If the combiner is effective at reducihata
volumes, the map task accumulates more spill files (andepfie
combiner function to all of them) before registering thatipaut with
the TaskTracker for pipelining.

The connection between pipelining and adaptive query gsece
ing techniques has been observed elsewhere (e.g., [1])adédge
tive scheme outlined above is relatively simple, but wedwelithat
adapting to feedback along pipelines has the potentialgwoifsi
cantly improve the utilization of MapReduce clusters.

3.2 Pipdining Between Jobs

would be difficult. Therefore, map tasks retain their outghata on
the local disk for the complete job duration. This allows thep's
output to be reproduced if any reduce tasks fail. For batih,jthe
key advantage of our architecture is that reducers are nokéd
waiting for the complete output of the task to be written tekdi

Our technique for recovering from map task failure is stuéfigy-
ward, but places a minor limit on the reducer’s ability to geespill
files. To avoid this, we envision introducing a “checkpointin-
cept: as a map task runs, it will periodically notify the Jododker
that it has reached offsetin its input split. The JobTracker will
notify any connected reducers; map task output that wasupeatl
before offsetz can then be merged by reducers with other map
task output as normal. To avoid duplicate results, if the heag
fails, the new map task attempt resumes reading its inpuffat o
setz. This technique would also reduce the amount of redundant
work done after a map task failure or during speculative etiec
of “backup” tasks [4].

3.4 Task Scheduling

The Hadoop JobTracker had to be retrofitted to support pipeli
ing between jobs. In regular Hadoop, job are submitted ore at
time; a job that consumes the output of one or more other jobs
cannot be submitted until the producer jobs have complefed.
address this, we modified the Hadoop job submission intertac

Many practical computations cannot be expressed as a single@ccept a list of jobs, where each job in the list depends ofjothe

MapReduce job, and the outputs of higher-level language$ig [7]
typically involve multiple jobs. In the traditional Hado@pchitec-
ture, the output of each job is written to HDFS in the reduep st

before it. The client interface traverses this list, antintaeach
job with the identifier of the job that it depends on. The Job-
Tracker looks for this annotation and co-schedules jobhk thigir

and then immediately read back from HDFS by the map step of the dependencies, giving slot preference to “upstream” jotes tive

next job. In fact, a client (e.g., Pig) cannot even schedutera
sumer job until the producer job has completed, becauselsthe
ing a map task requires knowing the HDFS block locations ef th
map’s input split.

In our modified version of Hadoop, the reduce tasks of one job
can optionally pipeline their output directly to the mapksef the
next job, sidestepping the need for expensive fault-tolestorage
in HDFS for what amounts to a temporary file. In stock Hadoop
the computation of the reduce function from the previousgot
the map function of the next job cannot be overlapped: théfaa
sult of the reduce step cannot be produced until all map tasks
completed, which prevents effective pipelining. HowevdQP
supports early returns of reducer output, which enableis®malg-
gregation and continuous query pipelines. This new funetity
will be the focus of our demonstration.

3.3 Fault Tolerance

Our pipelined Hadoop implementation is robust to the failof
both map and reduce tasks. To recover from map task failwes,

“downstream” jobs they feed. There are many interestingpopt
for scheduling pipelines or even DAGs of such jobs that we pia
investigate in future.

4. HOP DEMONSTRATION

Our pipelined implementation of Hadoop enables two new fea-
tures to the MapReduce model. In this section we provide & sho
description of these features along with a description ofiemon-
stration of these features.

4.1 Online Aggregation

Although MapReduce was originally designed as a batchataie
system, it is often used for interactive data analysis: a sigemits
a job to extract information from a data set, and then waitgew
the results before proceeding with the next step in the delysis
process. This trend has accelerated with the developmédmglof
level query languages that are executed as MapReduce jatis, s
as Hive [10], Pig [7], and Sawzall [8].

Traditional MapReduce implementations provide a poorrinte

added bookkeeping to the reduce task to record which map taskface for interactive data analysis, because they do notamiout-

produced each pipelined spill file. To simplify fault tolacz, the
reducer treats the output of a pipelined map task as “teetaintil
the JobTracker informs the reducer that the map task has @tedm
successfully. The reducer can merge together spill filegmgeed
by the same uncommitted mapper, but will not combine thogke sp
files with the output of other map tasks until it has been restifhat
the map task has committed. Thus, if a map task fails, eaalteed

put until the job has been executed to completion. However, i
many cases, an interactive user would prefer a “quick artg”dir
approximation over a correct answer that takes much longer t
compute. In the database literature, online aggregatisnbean
proposed to address this problem [6], but the batch-orienaéture

of traditional MapReduce implementations makes thesaiqubs
difficult to apply. In this demonstration, we will show how \eg-



tended our pipelined Hadoop implementation to suppornersig-
gregation within a single job and between multiple jobs. Wi w
visually demonstrate that online aggregation has a minimpéhct
on job completion times, and can often yield an accurateappr
mate answer long before the job has finished executing.

4.1.1 Demonstration

We demonstrate online aggregation in HOP using a data set con
taining seven months of hourly page view statistics for ntbem
2.5 million Wikipedia articles [9]. This data set is comjgrikof

5. CONCLUSION

MapReduce has proven to be a popular model for large-scale
parallel programming. Our Hadoop Online Prototype extehds
applicability of the model to pipelining behaviors, whileeperv-
ing the simple programming model and fault tolerance of & ful
featured MapReduce framework. HOP provides significant new
functionality, including “early returns” on long-runningbs via
online aggregation, and continuous queries over streadatay As
a more long-term agenda, we want to explore using MapReduce-
style programming for even more interactive applicatighsa first

320GB of compressed data (1TB uncompressed) that is divided SteP. We hope to revisit interactive data processing in jit sf

into 5066 compressed files. The demonstration query cotsts t
total number of page views for each language and each hobeof t
day. In other words, the query groups by language and houmyof d

the CONTROL work [5], with an eye toward improved scalabilit
via parallelism.

and sums the number of page views that occur in each group. The6. REFERENCES

demonstration will show early results that are nearly aateuto the
final answer in orders of magnitude less time.

4.2 Continuous Queries

MapReduce is often used to analyze streams of constamiyrar
data, such as URL access logs [4] and system console logs [11]
Because of traditional constraints on MapReduce, this ieedo
large batches that can only provide periodic views of astivithis
introduces significant latency into a data analysis protiesside-
ally should run in near-real time. It is also potentially fii@ent:

each new MapReduce job does not have access to the computa-

tional state of the last analysis run, so this state mustdmmputed
from scratch. The programmer can manually save the statechf e
job and then reload it for the next analysis operation, bist ith
labor-intensive.

Our pipelined version of Hadoop allows an alternative dezhi
ture: MapReduce jobs that r@ontinuously accepting new data as
it becomes available and analyzing it immediately. Thisved for
near-real-time analysis of data streams, and thus alloswilfpRe-
duce programming model to be applied to domains such asoervir
ment monitoring and real-time fraud detection.

4.2.1 Demonstration

In this demonstration, we will show how HOP supports contin-
uous MapReduce jobs, and visually demonstrate this featiihe
an implementation of cluster monitoring tool written as atoo
uous MapReduce query. The input data stream will be read-tim
system statistics and log feeds. We envision a facility whmmth
cluster operations staff and users have access to dispfayeyo
performance metrics about the processing, disk accesscand
munications within the cluster in order to better underdtanth
the cluster status as well as the progress of individual MajoRe
jobs.

The monitoring tool is written in Protovis [2], which allows
to create interactive, animated, and data rich displaysiordi-
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server which is accepting the output of the continuous queagh
client’'s web browser subscribes to the set of feeds it isé@sted in
and visualizes the resulting data.
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select displays in two different perspectives. In the fiestspec-
tive, data feeds are available for various levels of agdiegaf the
cluster resources (e.g., cluster, rack, machine). In thergk the
orientation is to the progress of MapReduce jobs executirtpe
same cluster. In either perspective, displays may be ataubtzy
reports of faults which can be expanded to reveal more detail
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