
Query Execution Techniques in PostgreSQL

Neil Conway
<nconway@truviso.com>

Truviso, Inc.

October 20, 2007

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 1 / 42

Introduction

Goals

Describe how Postgres works internally

Shed some light on the black art of EXPLAIN reading

Provide context to help you when tuning queries for performance

Outline
1 The big picture: the roles of the planner and executor

2 Plan trees and the Iterator model

3 Scan evaluation: table, index, and bitmap scans

4 Join evaluation: nested loops, sort-merge join, and hash join

5 Aggregate evaluation: grouping via sorting, grouping via hashing

6 Reading EXPLAIN

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 2 / 42

Introduction

Goals

Describe how Postgres works internally

Shed some light on the black art of EXPLAIN reading

Provide context to help you when tuning queries for performance

Outline
1 The big picture: the roles of the planner and executor

2 Plan trees and the Iterator model

3 Scan evaluation: table, index, and bitmap scans

4 Join evaluation: nested loops, sort-merge join, and hash join

5 Aggregate evaluation: grouping via sorting, grouping via hashing

6 Reading EXPLAIN

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 2 / 42

Division of Responsibilities

Typical Query Lifecycle

Parser: analyze syntax of query
query string ⇒ Query (AST)

Rewriter: apply rewrite rules (incl. view definitions)
Query⇒ zero or more Query

Planner: determine the best way to evaluate the query
Query⇒ Plan

Executor: evaluate the query
Plan⇒ PlanState
PlanState⇒ query results

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 3 / 42

Query Planner

Why Do We Need A Query Planner?

Queries are expressed in a logical algebra (e.g. SQL)

“Return the records that satisfy . . . ”

Queries are executed from a physical algebra (query plan)

“Index scan table x with key y , sort on key z , . . . ”

For a given SQL query, there are many equivalent query plans

Join order, join methods, scan methods, grouping methods, order of
predicate evaluation, semantic rewrites, . . .

Difference in runtime cost among equivalent plans can be enormous

Two Basic Tasks of the Planner
1 Enumerate the set of plans for a given query

2 Estimate the cost of executing a given query plan

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 4 / 42

Query Planner

Why Do We Need A Query Planner?

Queries are expressed in a logical algebra (e.g. SQL)

“Return the records that satisfy . . . ”

Queries are executed from a physical algebra (query plan)

“Index scan table x with key y , sort on key z , . . . ”

For a given SQL query, there are many equivalent query plans

Join order, join methods, scan methods, grouping methods, order of
predicate evaluation, semantic rewrites, . . .

Difference in runtime cost among equivalent plans can be enormous

Two Basic Tasks of the Planner
1 Enumerate the set of plans for a given query

2 Estimate the cost of executing a given query plan

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 4 / 42

Expressing the Physical Algebra

Query Plans

The operators of the physical algebra are the techniques available for
query evaluation

Scan methods, join methods, sorts, aggregation operations, . . .
No simple relationship between logical operators and physical operators

Each operator has 0, 1 or 2 input relations, and 1 output relation

0 inputs: scans
2 inputs: joins, set operations
1 input: everything else

The operators are arranged in a tree

Data flows from the leaves toward the root
The “query plan” is simply this tree of operators
The output of the root node is the result of the query

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 5 / 42

Example Query Plan

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 6 / 42

Typical Order Of Operations

Conceptual Plan Tree Structure

From leaf → root, a typical query plan conceptually does:

1 Scans: heap & index scans, function scans, subquery scans, . . .

2 Joins

3 Grouping, aggregation and HAVING

4 Sorting (ORDER BY)

5 Set operations

6 Projection (apply target list expressions)

In practice, various reordering and rewriting games, such as:

Pushdown: move operators closer to leaves to reduce data volume

Pullup: transform subqueries into joins

Choose lower-level operators to benefit upper-level operators

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 7 / 42

The Iterator Model

Common Operator Interface

Most Postgres operators obey the same interface for exchanging data:

Init(): acquire locks, initialize state

GetNext(): return the next output tuple

Typically calls GetNext() on child operators as needed
Blocking operation
Optionally supports a direction (forward or backward)

ReScan(): reset the operator to reproduce its output from scratch

MarkPos(): record current operator position (state)

RestorePos(): restore previously-marked position

End(): release locks and other resources

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 8 / 42

Properties of the Iterator Model

A Clean Design

Encodes both data flow and control flow

Operators simply pull on their inputs and produce results

Encapsulation: each operator needs no global knowledge

Disadvantages

1 tuple per GetNext() is inefficient for DSS-style queries

Operators can only make decisions with local knowledge

Synchronous: perhaps not ideal for distributed or parallel DBMS

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 9 / 42

Properties of the Iterator Model

A Clean Design

Encodes both data flow and control flow

Operators simply pull on their inputs and produce results

Encapsulation: each operator needs no global knowledge

Disadvantages

1 tuple per GetNext() is inefficient for DSS-style queries

Operators can only make decisions with local knowledge

Synchronous: perhaps not ideal for distributed or parallel DBMS

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 9 / 42

Pipelining

What Is Pipelining?

How much work must an operator do before beginning to produce results?

Some operators must essentially compute their entire result set before
emitting any tuples (e.g. external sort): “materialization”

Whereas other, pipelinable operators produce tuples one-at-a-time

Why Is It Important?

Lower latency

The operator may not need to be completely evaluated

e.g. cursors, IN and EXISTS subqueries, LIMIT, etc.

Pipelined operators require less state

Since materialized state often exceeds main memory, we may need to
buffer it to disk for non-pipelined operators

Plans with low startup cost sometimes > those with low total cost

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 10 / 42

Pipelining

What Is Pipelining?

How much work must an operator do before beginning to produce results?

Some operators must essentially compute their entire result set before
emitting any tuples (e.g. external sort): “materialization”

Whereas other, pipelinable operators produce tuples one-at-a-time

Why Is It Important?

Lower latency

The operator may not need to be completely evaluated

e.g. cursors, IN and EXISTS subqueries, LIMIT, etc.

Pipelined operators require less state

Since materialized state often exceeds main memory, we may need to
buffer it to disk for non-pipelined operators

Plans with low startup cost sometimes > those with low total cost

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 10 / 42

Basic Principles (Assumptions)

Disk I/O dominates query evaluation cost

Random I/O is more expensive than sequential I/O

. . . unless the I/O is cached

Reduce inter-operator data volume as far as possible
Apply predicates as early as possible

Assumes that predicates are relatively cheap

Also do projection early
TODO: pushdown grouping when possible

Fundamental distinction between plan-time and run-time

Planner does global optimizations, executor does local optimizations
No feedback from executor → optimizer

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 11 / 42

Scan Evaluation

Sequential Scans

Simply read the heap file in-order: sequential I/O

Doesn’t necessarily match on-disk order, but it’s the best we can do

Must check heap at some point anyway, to verify that tuple is visible
to our transaction (“tqual”)

Evaluate any predicates that only refer to this table

The Problem

Must scan entire table, even if only a few rows satisfy the query

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 12 / 42

Scan Evaluation

Sequential Scans

Simply read the heap file in-order: sequential I/O

Doesn’t necessarily match on-disk order, but it’s the best we can do

Must check heap at some point anyway, to verify that tuple is visible
to our transaction (“tqual”)

Evaluate any predicates that only refer to this table

The Problem

Must scan entire table, even if only a few rows satisfy the query

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 12 / 42

Index Scans

Basic Idea

Use a secondary data structure to quickly find the tuples that satisfy a
certain predicate

Popular index types include trees, hash tables, and bitmaps

Downsides

More I/Os needed: 1 or more to search the index, plus 1 to load the
corresponding heap page

Postgres cannot use “index-only scans” at present

Random I/O needed for both index lookup and heap page

Unless the index is clustered: index order matches heap order

Therefore, if many rows match predicate, index scans are inefficient

Index must be updated for every insertion; consumes buffer space

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 13 / 42

Illustration

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 14 / 42

B+-Tree Indexes

The Canonical Disk-Based Index For Scalar Data

On-disk tree index, designed to reduce # of disk seeks
1 seek per tree level; therefore, use a high branching factor: typically
100s of children per interior node

B != “binary”!

All values are stored in leaf nodes: interior nodes only for navigation
Tree height O(log100 n): typically 5 or 6 even for large tables
Therefore, interior nodes are often cached in memory

Allows both equality and range queries: ≤, <, >, ≥, =

Leaf nodes are linked to one another

Highly optimized concurrent locking scheme

“Ubiquitous” even in 1979

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 15 / 42

Bitmap Scans

Bitmap Scans

Basic idea: decouple scanning indexes from scanning the heap

1 For each relevant index on the target table:

Scan index to find qualifying tuples
Record qualifying tuples by setting bits in an in-memory bitmap

1 bit per heap tuple if there is space; otherwise, 1 bit per heap page

2 Combine bitmaps with bitwise AND or OR, as appropriate

3 Use the bitmap to scan the heap in order

Benefits

Reads heap sequentially, rather than in index order

Allows the combination of multiple indexes on a single table

More flexible than multi-column indexes

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 16 / 42

Join Evaluation

Importance

Join performance is key to overall query processing performance

Much work has been done in this area

Toy Algorithm

To join R and S :
1 Materialize the Cartesian product of R and S

All pairs (r , s) such that r ∈ R, s ∈ S

2 Take the subset that matches the join key

. . . laughably inefficient: O(n2) space

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 17 / 42

Nested Loops

Basic Algorithm

For a NL join between R and S on R.k = S .k :

for each tuple r in R:
for each tuple s in S with s.k = r.k:

emit output tuple (r,s)

Terminology: R is the outer join operand, S is the inner join operand.
Equivalently: R is left, S is right.

Simplest Feasible Algorithm

Only useful when finding the qualifying R and S tuples is cheap, and there
are few such tuples

R and S are small, and/or

Index on R.k , join key (or other predicates) is selective

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 18 / 42

Sort-Merge Join

Basic Algorithm

For a SM join between R and S on R.k = S .k:

sort R on R.k
sort S on S.k
forboth r in R, s in S:

if r.k = s.k:
emit output tuple (r,s)

(Duplicate values make the actual implementation more complex.)

The Problem

This works fine when both R and S fit in memory

. . . unfortunately, this is typically not the case

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 19 / 42

Sort-Merge Join

Basic Algorithm

For a SM join between R and S on R.k = S .k:

sort R on R.k
sort S on S.k
forboth r in R, s in S:

if r.k = s.k:
emit output tuple (r,s)

(Duplicate values make the actual implementation more complex.)

The Problem

This works fine when both R and S fit in memory

. . . unfortunately, this is typically not the case

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 19 / 42

Option 1: Index-based Sorting

Avoid An Explicit Sort

Traversing leaf level of a B+-tree yields the index keys in order

Produce sorted output by fetching heap tuples in index order

NB: We can’t use a bitmap index scan for this purpose!

Downsides

Requires 2 I/Os: one for index page, one for heap page (to check
visibility)

Leaf-level is often non-contiguous on disk → random I/O

Unless index order matches heap order (clustered index), needs
random I/O to read heap tuples as well

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 20 / 42

Option 1: Index-based Sorting

Avoid An Explicit Sort

Traversing leaf level of a B+-tree yields the index keys in order

Produce sorted output by fetching heap tuples in index order

NB: We can’t use a bitmap index scan for this purpose!

Downsides

Requires 2 I/Os: one for index page, one for heap page (to check
visibility)

Leaf-level is often non-contiguous on disk → random I/O

Unless index order matches heap order (clustered index), needs
random I/O to read heap tuples as well

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 20 / 42

Illustration

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 21 / 42

Option 2: External Sorting

Goal

Sort an arbitrary-sized relation using a fixed amount of main memory

Arbitrary disk space

Optimize to reduce I/O requirements

Not necessarily the number of comparisons!

External Merge Sort

Divide the input into runs, sort each run in-memory, write to disk

Recursively merge runs together to produce longer sorted runs

Eventually, a single run contains the entire sorted output

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 22 / 42

Option 2: External Sorting

Goal

Sort an arbitrary-sized relation using a fixed amount of main memory

Arbitrary disk space

Optimize to reduce I/O requirements

Not necessarily the number of comparisons!

External Merge Sort

Divide the input into runs, sort each run in-memory, write to disk

Recursively merge runs together to produce longer sorted runs

Eventually, a single run contains the entire sorted output

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 22 / 42

Illustration

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 23 / 42

Simple Algorithm

External Sort, v1
-- run generation phase
while (t = getNext()) != NULL:

add t to buffer
if buffer exceeds work_mem:

sort buffer
write to run file, reset buffer

-- merge phases
while > 1 run:

for each pair of runs:
merge them to into a single sorted run

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 24 / 42

Optimizing Run Generation

Optimization Goals

Forms tree: height is # of merge phases, leaf level is # of initial runs

We read and write the entire input for each tree level → try to reduce
tree height

Replacement Selection

Simple approach: read input until work mem is reached, then sort and
write to temp file

Better: read input into an in-memory heap. Write tuples to temp file
as needed to stay under work mem

Next tuple to be written to a run is the smallest tuple in the heap that
is greater than the last tuple written to that run

Result: more comparisons, but runs are typically twice as large

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 25 / 42

Optimizing Run Generation

Optimization Goals

Forms tree: height is # of merge phases, leaf level is # of initial runs

We read and write the entire input for each tree level → try to reduce
tree height

Replacement Selection

Simple approach: read input until work mem is reached, then sort and
write to temp file

Better: read input into an in-memory heap. Write tuples to temp file
as needed to stay under work mem

Next tuple to be written to a run is the smallest tuple in the heap that
is greater than the last tuple written to that run

Result: more comparisons, but runs are typically twice as large

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 25 / 42

Optimizing The Merge Phases

Simple Approach

Merge sorted runs in pairs, yielding a binary tree (fan-in = 2)

To reduce tree height, maximize fan-in: merge > 2 runs at a time

Better Approach

1 Read the first tuple from each input run into an in-memory heap

2 Repeatedly push the smallest tuple in the heap to the output run;
replace with the next tuple from that input run

Optimizing I/O

Very sub-optimal I/O pattern: random reads from input runs

Therefore, use additional work mem to buffer each input run: alternate
between prereading to fill inputs and merging to write output

Tradeoff: larger buffers optimizes I/O, but reduces fan-in

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 26 / 42

Optimizing The Merge Phases

Simple Approach

Merge sorted runs in pairs, yielding a binary tree (fan-in = 2)

To reduce tree height, maximize fan-in: merge > 2 runs at a time

Better Approach

1 Read the first tuple from each input run into an in-memory heap

2 Repeatedly push the smallest tuple in the heap to the output run;
replace with the next tuple from that input run

Optimizing I/O

Very sub-optimal I/O pattern: random reads from input runs

Therefore, use additional work mem to buffer each input run: alternate
between prereading to fill inputs and merging to write output

Tradeoff: larger buffers optimizes I/O, but reduces fan-in

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 26 / 42

Optimizing The Merge Phases

Simple Approach

Merge sorted runs in pairs, yielding a binary tree (fan-in = 2)

To reduce tree height, maximize fan-in: merge > 2 runs at a time

Better Approach

1 Read the first tuple from each input run into an in-memory heap

2 Repeatedly push the smallest tuple in the heap to the output run;
replace with the next tuple from that input run

Optimizing I/O

Very sub-optimal I/O pattern: random reads from input runs

Therefore, use additional work mem to buffer each input run: alternate
between prereading to fill inputs and merging to write output

Tradeoff: larger buffers optimizes I/O, but reduces fan-in

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 26 / 42

Further Refinements

Don’t Materialize Final Merge Phase

Skip final merge phase: produce output from the penultimate set of runs

Small Inputs

Many sorts are small → just buffer in work mem and quicksort

Avoid Redundant Sorts

If the input is already sorted, we can avoid the sort altogether

A sizable portion of the planner is devoted to this optimization
(“interesting orders”)

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 27 / 42

Further Refinements

Don’t Materialize Final Merge Phase

Skip final merge phase: produce output from the penultimate set of runs

Small Inputs

Many sorts are small → just buffer in work mem and quicksort

Avoid Redundant Sorts

If the input is already sorted, we can avoid the sort altogether

A sizable portion of the planner is devoted to this optimization
(“interesting orders”)

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 27 / 42

Further Refinements

Don’t Materialize Final Merge Phase

Skip final merge phase: produce output from the penultimate set of runs

Small Inputs

Many sorts are small → just buffer in work mem and quicksort

Avoid Redundant Sorts

If the input is already sorted, we can avoid the sort altogether

A sizable portion of the planner is devoted to this optimization
(“interesting orders”)

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 27 / 42

Bounded Sort

A Special Case: LIMIT

Can we do better, if we know at most k tuples of the sort’s output will be
needed?

8.3 Feature

If k is small relative to work mem, no need to go to disk at all

Instead, keep k highest values seen-so-far in an in-memory heap

Benefits:

No need to hit disk, even for large inputs
O(n · log k) comparisons rather than O(n · log n)

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 28 / 42

Bounded Sort

A Special Case: LIMIT

Can we do better, if we know at most k tuples of the sort’s output will be
needed?

8.3 Feature

If k is small relative to work mem, no need to go to disk at all

Instead, keep k highest values seen-so-far in an in-memory heap

Benefits:

No need to hit disk, even for large inputs
O(n · log k) comparisons rather than O(n · log n)

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 28 / 42

Hash Join

Classic Hash Join Algorithm

For a HJ between R and S on R.k = S .k :

-- build phase
for each tuple r in R:

insert r into hash table T with key r.k
-- probe phase
for each tuple s in S:

for each tuple r in bucket T[s.k]:
if s.k = r.k:

emit output tuple (T[s.k], s)

Pick R to be the smaller input.

The Problem

What if we can’t fit all of R into memory?

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 29 / 42

Hash Join

Classic Hash Join Algorithm

For a HJ between R and S on R.k = S .k :

-- build phase
for each tuple r in R:

insert r into hash table T with key r.k
-- probe phase
for each tuple s in S:

for each tuple r in bucket T[s.k]:
if s.k = r.k:

emit output tuple (T[s.k], s)

Pick R to be the smaller input.

The Problem

What if we can’t fit all of R into memory?

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 29 / 42

Simple Overflow Avoidance

Simple Algorithm

for each tuple r in R:
add r to T with key r.k
if T exceeds work_mem:

probe S for matches with T on S.k
reset T

-- final merge phase
probe S for matches with T on S.k

The Problem

Works fairly well, but reads S more times than necessary

If we’re going to read S multiple times, we can do better

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 30 / 42

Simple Overflow Avoidance

Simple Algorithm

for each tuple r in R:
add r to T with key r.k
if T exceeds work_mem:

probe S for matches with T on S.k
reset T

-- final merge phase
probe S for matches with T on S.k

The Problem

Works fairly well, but reads S more times than necessary

If we’re going to read S multiple times, we can do better

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 30 / 42

Grace Hash Join

Algorithm

Choose two orthogonal hash functions, h1 and h2

Read in R and S . Form k partitions by hashing the join key using h1

and write out the partitions

Then hash join each of the k partitions independently using h2

Two matching tuples must be in the same partition
If a partition does not fit into memory, recursively partition it via h3

Problems

Sensitive to the distribution of input data: partitions may not be
equal-sized

Therefore, we want to maximize k, to increase the chance that all
partitions fit in memory

Inefficient if R fits into memory: no need to partition at all

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 31 / 42

Grace Hash Join

Algorithm

Choose two orthogonal hash functions, h1 and h2

Read in R and S . Form k partitions by hashing the join key using h1

and write out the partitions

Then hash join each of the k partitions independently using h2

Two matching tuples must be in the same partition
If a partition does not fit into memory, recursively partition it via h3

Problems

Sensitive to the distribution of input data: partitions may not be
equal-sized

Therefore, we want to maximize k , to increase the chance that all
partitions fit in memory

Inefficient if R fits into memory: no need to partition at all

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 31 / 42

Hybrid Hash Join

A Small But Important Refinement

Treat partition 0 specially: keep it in memory

Therefore, divide available memory among partition 0, and the output
buffers for the remaining k partitions

Partition Sizing

If we have B buffers in work mem, we can make at most B partitions

If any of the partitions is larger than B, we need to recurse

Tradeoff: devote more memory to partition 0, or to maximizing the
number of partitions?

Neat Trick

When joining on-disk partitions, if |Sk | < |Rk |, switch them

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 32 / 42

Hybrid Hash Join

A Small But Important Refinement

Treat partition 0 specially: keep it in memory

Therefore, divide available memory among partition 0, and the output
buffers for the remaining k partitions

Partition Sizing

If we have B buffers in work mem, we can make at most B partitions

If any of the partitions is larger than B, we need to recurse

Tradeoff: devote more memory to partition 0, or to maximizing the
number of partitions?

Neat Trick

When joining on-disk partitions, if |Sk | < |Rk |, switch them

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 32 / 42

Aggregate Evaluation

Basic Task
1 Form groups (“map”)

Collect rows with the same grouping key together

2 Evaluate aggregate functions for each group (“reduce”)

Similar techniques needed for duplicate elimination (DISTINCT, UNION).

Aggregate API

For each aggregate, in each group:

1 s = initcond
2 For each value vi in the group:

s = sfunc(s, vi)

3 final = ffunc(s)

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 33 / 42

Aggregate Evaluation

Basic Task
1 Form groups (“map”)

Collect rows with the same grouping key together

2 Evaluate aggregate functions for each group (“reduce”)

Similar techniques needed for duplicate elimination (DISTINCT, UNION).

Aggregate API

For each aggregate, in each group:

1 s = initcond
2 For each value vi in the group:

s = sfunc(s, vi)

3 final = ffunc(s)

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 33 / 42

Grouping by Sorting

Simple Idea

1 Take the inputs in order of the grouping key

Sort if necessary

2 For each group, compute aggregates over it and emit the result

Naturally pipelined, if we don’t need an external sort.

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 34 / 42

Grouping by Hashing

Simple Idea

1 Create a hash table with one bucket per group
2 For each input row:

Apply hash to find group
Update group’s state value accordingly

Inherently non-pipelinable. Typically performs well for small numbers of
distinct groups.

The Problem

What happens if the size of the hash table grows large?

That is, if there are many distinct groups

At present, nothing intelligent — the planner does its best to avoid
hashed aggregation with many distinct groups

FIXME

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 35 / 42

Grouping by Hashing

Simple Idea

1 Create a hash table with one bucket per group
2 For each input row:

Apply hash to find group
Update group’s state value accordingly

Inherently non-pipelinable. Typically performs well for small numbers of
distinct groups.

The Problem

What happens if the size of the hash table grows large?

That is, if there are many distinct groups

At present, nothing intelligent — the planner does its best to avoid
hashed aggregation with many distinct groups

FIXME

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 35 / 42

Set Operations

Two Requirements

1 Duplicate elimination (unless ALL is specified)

2 Perform set operation itself: UNION, INTERSECT, EXCEPT

Implementation

Both requirements can be achieved by concatenating the inputs together,
then sorting to eliminate duplicates

For UNION ALL, we can skip the sort

TODO: consider hashing?

TODO: consider rewriting set operations → joins

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 36 / 42

Set Operations

Two Requirements

1 Duplicate elimination (unless ALL is specified)

2 Perform set operation itself: UNION, INTERSECT, EXCEPT

Implementation

Both requirements can be achieved by concatenating the inputs together,
then sorting to eliminate duplicates

For UNION ALL, we can skip the sort

TODO: consider hashing?

TODO: consider rewriting set operations → joins

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 36 / 42

Duality of Sorting and Hashing

A Nice Idea, due to Graefe, Linville and Shapiro (1994)

Both algorithms are simple for small inputs

Quicksort, classic hash join

Use divide-and-conquer for large inputs: partition, then merge

Hashing: partition on a logical key (hash function), then merge
on a physical key (one partition at a time)

Sorting: partition on a physical key (position in input), then
merge on a logical key (sort key)

I/O pattern: hashing does random writes and sequential reads,
whereas sorting does random reads and sequential writes

Hashing can be viewed as radix sort on a virtual key (hash value)

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 37 / 42

Reading EXPLAIN

EXPLAIN pretty-prints the plan chosen for a query

For each plan node: startup cost, total cost, and result set size
Estimated cost is measured in units of disk I/Os, with fudge factors for
CPU expense and random vs. sequential I/O
A node’s cost is inclusive of the cost of its child nodes

EXPLAIN ANALYZE also runs the query and gathers runtime stats

Runtime cost is measured in elapsed time
How many rows did an operator actually produce?
Where is the bulk of the query’s runtime really spent?
Did the planner’s estimates actually match reality?

Most common planner problem: misestimating result set sizes

When debugging for planner mistakes, work from the leaves up
(And of course, be sure to run ANALYZE)

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 38 / 42

Example Query

SELECT t2.id, t1.name
FROM t1, t2

WHERE t1.tag_id = t2.tag_id
AND t2.field1 IN (5, 10, 15, ...)
AND t2.is_deleted IS NULL;

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 39 / 42

EXPLAIN ANALYZE Output

Merge Join (cost=18291.23..21426.96 rows=3231 width=14)

(actual time=14.024..212.427 rows=225 loops=1)

Merge Cond: (t1.tag_id = t2.tag_id)

-> Index Scan using t1_pkey_idx on t1

(cost=0.00..2855.74 rows=92728 width=14)

(actual time=0.041..115.231 rows=54170 loops=1)

-> Sort (cost=18291.23..18299.31 rows=3231 width=8)

(actual time=13.967..14.289 rows=225 loops=1)

Sort Key: t2.tag_id

Sort Method: quicksort Memory: 26kB

-> Bitmap Heap Scan on t2

(cost=5659.07..18102.90 rows=3231 width=8)

(actual time=12.731..13.493 rows=225 loops=1)

Recheck Cond: ((field1 = ANY (’{5, 10, 15, ...}’::integer[]))

AND (is_deleted IS NULL))

-> Bitmap Index Scan on t2_field1_idx

(cost=0.00..5658.26 rows=3231 width=0)

(actual time=12.686..12.686 rows=225 loops=1)

Index Cond: (field1 = ANY (’{5, 10, 15, ...}’::integer[]))

Total runtime: 212.939 ms

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 40 / 42

Conclusion

Thank you.

Any questions?

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 41 / 42

References

Classic survey paper on query evaluation techniques:

G. Graefe. Query Evaluation Techniques for Large Databases. In ACM Computing
Surveys, Vol. 25, No. 2, June 1993.

The duality of sorting and hashing, and related ideas:

G. Graefe, A. Linville, L. D. Shapiro. Sort versus hash revisited. IEEE Transactions
on Knowledge and Data Engineering, 6(6):934–944, December 1994.

Hybrid hash join:

L. D. Shapiro. Join Processing in Database Systems with Large Main Memories.
ACM Transactions on Database Systems, Vol. 11, No. 3, 1986.

Postgres’ external sorting implementation is based on Knuth:

D. Knuth. The Art of Computing Programming: Sorting and Searching, vol. 3.
Addison-Wesley, 1973.

An exhaustive survey on DBMS sorting techniques:

G. Graefe. Implementing Sorting in Database Systems. In ACM Computing
Surveys, Vol. 38, No. 3, 2006.

Neil Conway (Truviso) Query Execution in PostgreSQL October 20, 2007 42 / 42

	Scan Evaluation
	Appendix

