
Introduction to Hacking PostgreSQL

Neil Conway
neilc@samurai.com

May 21, 2007

Outline

1 Prerequisites
Why Should You Hack On PostgreSQL?
What Skills Will You Need?
What Tools Should You Use?

2 The Architecture of PostgreSQL
System Architecture
Components of the Backend

3 Common Code Conventions
Memory Management
Error Handling

4 Community Processes

5 Sample Patch

6 Conclusion

Outline

1 Prerequisites
Why Should You Hack On PostgreSQL?
What Skills Will You Need?
What Tools Should You Use?

2 The Architecture of PostgreSQL
System Architecture
Components of the Backend

3 Common Code Conventions
Memory Management
Error Handling

4 Community Processes

5 Sample Patch

6 Conclusion

Why Hack On PostgreSQL?

Possible Reasons

Databases are fun!

Contribute to the community

We need more reviewers

Understand how PostgreSQL works more deeply

Become a better programmer

The PostgreSQL source is a good example to learn from

Commercial opportunities

Why Hack On PostgreSQL?

Possible Reasons

Databases are fun!

Contribute to the community

We need more reviewers

Understand how PostgreSQL works more deeply

Become a better programmer

The PostgreSQL source is a good example to learn from

Commercial opportunities

Why Hack On PostgreSQL?

Possible Reasons

Databases are fun!

Contribute to the community

We need more reviewers

Understand how PostgreSQL works more deeply

Become a better programmer

The PostgreSQL source is a good example to learn from

Commercial opportunities

Why Hack On PostgreSQL?

Possible Reasons

Databases are fun!

Contribute to the community

We need more reviewers

Understand how PostgreSQL works more deeply

Become a better programmer

The PostgreSQL source is a good example to learn from

Commercial opportunities

Why Hack On PostgreSQL?

Possible Reasons

Databases are fun!

Contribute to the community

We need more reviewers

Understand how PostgreSQL works more deeply

Become a better programmer

The PostgreSQL source is a good example to learn from

Commercial opportunities

Skills

Essential

Some knowledge of C

Fortunately, C is easy

Some familiarity with Unix and basic Unix programming

Postgres development on Win32 is increasingly feasible

Helpful, but not essential

Unix systems programming

DBMS internals

Autotools-foo

Performance analysis

. . . depending on what you want to hack on

Development Tools

The Basics

$CC, Bison, Flex, CVS, autotools

Configure flags: enable-depend, enable-debug,
enable-cassert

Consider CFLAGS=-O0 for easier debugging (and faster builds)

With GCC, this suppresses some important warnings

Indexing The Source

A tool like tags, cscope or glimpse is essential when
navigating any large code base

“What is the definition of this function/type?”
“What are all the call-sites of this function?”
src/tools/make [ce]tags

Development Tools

The Basics

$CC, Bison, Flex, CVS, autotools

Configure flags: enable-depend, enable-debug,
enable-cassert

Consider CFLAGS=-O0 for easier debugging (and faster builds)

With GCC, this suppresses some important warnings

Indexing The Source

A tool like tags, cscope or glimpse is essential when
navigating any large code base

“What is the definition of this function/type?”
“What are all the call-sites of this function?”
src/tools/make [ce]tags

Other Tools

A debugger is often necessary: most developers use gdb
Or a front-end like ddd
Even MSVC?

ccache and distcc are useful, especially on slower machines

valgrind is useful for debugging memory errors and memory
leaks in client apps

Not as useful for finding backend memory leaks

Profiling

gprof is the traditional choice; various bugs and limitations

Use --enable-profiling to reduce the pain

callgrind works well, nice UI (kcachegrind)

oprofile is good at system-level performance analysis

DTrace

Other Tools

A debugger is often necessary: most developers use gdb
Or a front-end like ddd
Even MSVC?

ccache and distcc are useful, especially on slower machines

valgrind is useful for debugging memory errors and memory
leaks in client apps

Not as useful for finding backend memory leaks

Profiling

gprof is the traditional choice; various bugs and limitations

Use --enable-profiling to reduce the pain

callgrind works well, nice UI (kcachegrind)

oprofile is good at system-level performance analysis

DTrace

SGML Documentation

Understatement

The DocBook toolchain is less than perfect

Authoring SGML

I don’t know of a good SGML editor, other than Emacs

Writing DocBook markup by hand is labour-intensive but not
hard: copy conventions of nearby markup

make check does a quick syntax check

make draft is useful for previewing changes

SGML Documentation

Understatement

The DocBook toolchain is less than perfect

Authoring SGML

I don’t know of a good SGML editor, other than Emacs

Writing DocBook markup by hand is labour-intensive but not
hard: copy conventions of nearby markup

make check does a quick syntax check

make draft is useful for previewing changes

Patch Management

Most development is done by mailing around patches

echo "diff -c -N -p" >> ~/.cvsrc
cvs diff > ~/my_patch-vN.patch

interdiff is a useful tool: “exactly what did I change
between v5 and v6?”

Remote cvs is slow: setup a local mirror of the CVS
repository

cvsup, csup, rsync, svnsync (soon!)

To include newly-added files in a CVS diff, either use a local
CVS mirror or cvsutils

For larger projects: akpm’s Quilt, or a distributed VCS

Postgres-R uses Monotone
Recommended: git tree at repo.or.cz/w/PostgreSQL.git

repo.or.cz/w/PostgreSQL.git

Text Editor

If you’re not using a good programmer’s text editor, start

Teach your editor to obey the Postgres coding conventions:

Hard tabs, with a tab width of 4 spaces
Similar to Allman/BSD style; just copy the surrounding code

Using the Postgres coding conventions makes it more likely
that your patch will be promptly reviewed and applied

Useful Texts

SQL-92, SQL:1999, SQL:2003, and SQL:200n

http://www.wiscorp.com/SQLStandards.html (“draft”)
There are some books and presentations that are more
human-readable
There’s a samizdat plaintext version of SQL-92

SQL references for Oracle, DB2, . . .

A textbook on the design of database management systems

I personally like Database Management Systems by
Ramakrishnan and Gehrke

Books on the toolchain (C, Yacc, autotools, . . .) and
operating system kernels

http://www.wiscorp.com/SQLStandards.html

Outline

1 Prerequisites
Why Should You Hack On PostgreSQL?
What Skills Will You Need?
What Tools Should You Use?

2 The Architecture of PostgreSQL
System Architecture
Components of the Backend

3 Common Code Conventions
Memory Management
Error Handling

4 Community Processes

5 Sample Patch

6 Conclusion

The Postmaster

Lifecycle

1 Initialize essential subsystems; perform XLOG recovery to
restore the database to a consistent state

2 Attach to shared memory segment (SysV IPC), initialize
shared data structures

3 Fork off daemon processes: autovacuum launcher, stats
daemon, bgwriter, syslogger

4 Bind to TCP socket, listen for incoming connections

For each new connection, spawn a backend
Periodically check for child death, launch replacements or
perform recovery

The Postmaster

Lifecycle

1 Initialize essential subsystems; perform XLOG recovery to
restore the database to a consistent state

2 Attach to shared memory segment (SysV IPC), initialize
shared data structures

3 Fork off daemon processes: autovacuum launcher, stats
daemon, bgwriter, syslogger

4 Bind to TCP socket, listen for incoming connections

For each new connection, spawn a backend
Periodically check for child death, launch replacements or
perform recovery

The Postmaster

Lifecycle

1 Initialize essential subsystems; perform XLOG recovery to
restore the database to a consistent state

2 Attach to shared memory segment (SysV IPC), initialize
shared data structures

3 Fork off daemon processes: autovacuum launcher, stats
daemon, bgwriter, syslogger

4 Bind to TCP socket, listen for incoming connections

For each new connection, spawn a backend
Periodically check for child death, launch replacements or
perform recovery

The Postmaster

Lifecycle

1 Initialize essential subsystems; perform XLOG recovery to
restore the database to a consistent state

2 Attach to shared memory segment (SysV IPC), initialize
shared data structures

3 Fork off daemon processes: autovacuum launcher, stats
daemon, bgwriter, syslogger

4 Bind to TCP socket, listen for incoming connections

For each new connection, spawn a backend
Periodically check for child death, launch replacements or
perform recovery

Daemon Processes

Types of Processes

autovacuum launcher: Periodically start autovacuum workers
bgwriter: Flush dirty buffers to disk, perform periodic checkpoints
stats collector: Accepts run-time stats from backends via UDP
syslogger: Collect log output from other processes, write to file(s)
normal backend: Handles a single client session

Inter-Process Communication

Most shared data is communicated via a shared memory
segment

Signals, semaphores, and pipes also used as appropriate

Stats collector uses UDP on the loopback interface

Subprocesses inherit the state of the postmaster after fork()

Daemon Processes

Types of Processes

autovacuum launcher: Periodically start autovacuum workers
bgwriter: Flush dirty buffers to disk, perform periodic checkpoints
stats collector: Accepts run-time stats from backends via UDP
syslogger: Collect log output from other processes, write to file(s)
normal backend: Handles a single client session

Inter-Process Communication

Most shared data is communicated via a shared memory
segment

Signals, semaphores, and pipes also used as appropriate

Stats collector uses UDP on the loopback interface

Subprocesses inherit the state of the postmaster after fork()

Consequences

Advantages

Address space protection: significantly harder for misbehaving
processes to crash the entire DBMS

IPC and modifications to shared data are explicit: all state is
process-private by default

Disadvantages

Shared memory segment is statically-sized at startup

Managing arbitrarily-sized shared data is problematic

Some shared operations can be awkward: e.g. using multiple
processors to evaluate a single query

Consequences

Advantages

Address space protection: significantly harder for misbehaving
processes to crash the entire DBMS

IPC and modifications to shared data are explicit: all state is
process-private by default

Disadvantages

Shared memory segment is statically-sized at startup

Managing arbitrarily-sized shared data is problematic

Some shared operations can be awkward: e.g. using multiple
processors to evaluate a single query

Backend Lifecycle

Backend Lifecycle

1 Postmaster accepts a connection, forks a new backend, then
closes its copy of the TCP socket

All communication occurs between backend and client

2 Backend enters the “frontend/backend” protocol:

1 Authenticate the client
2 “Simple query protocol”: accept a query, evaluate it, return

result set
3 When the client disconnects, the backend exits

Backend Lifecycle

Backend Lifecycle

1 Postmaster accepts a connection, forks a new backend, then
closes its copy of the TCP socket

All communication occurs between backend and client

2 Backend enters the “frontend/backend” protocol:

1 Authenticate the client
2 “Simple query protocol”: accept a query, evaluate it, return

result set
3 When the client disconnects, the backend exits

Stages In Query Processing

Major Components

1 The parser - lex & parse the query string

2 The rewriter - apply rewrite rules

3 The optimizer - determine an efficient query plan

4 The executor - execute a query plan

5 The utility processor - process DDL like CREATE TABLE

The Parser

Lex and parse the query string submitted by the user

Lexing: divide the input string into a sequence of tokens

Postgres uses GNU Flex

Parsing: construct an abstract syntax tree (AST) from
sequence of tokens

Postgres uses GNU Bison
The elements of the AST are known as parse nodes

Produces a “raw parsetree”: a linked list of parse nodes

Parse nodes are defined in include/nodes/parsenodes.h

Typically a simple mapping between grammar productions and
parse node structure

The Parser

Lex and parse the query string submitted by the user

Lexing: divide the input string into a sequence of tokens

Postgres uses GNU Flex

Parsing: construct an abstract syntax tree (AST) from
sequence of tokens

Postgres uses GNU Bison
The elements of the AST are known as parse nodes

Produces a “raw parsetree”: a linked list of parse nodes

Parse nodes are defined in include/nodes/parsenodes.h

Typically a simple mapping between grammar productions and
parse node structure

Semantic Analysis

In the parser itself, only syntactic analysis is done; basic
semantic checks are done in a subsequent “analysis phase”

parser/analyze.c and related code under parser/

Resolve column references, considering schema path and
query context

SELECT a, b, c FROM t1, t2, x.t3
WHERE x IN (SELECT t1 FROM b)

Verify that referenced schemas, tables and columns exist

Check that the types used in expressions are consistent

In general, check for errors that are impossible or difficult to
detect in the parser itself

Rewriter, Planner

The analysis phase produces a Query, which is the query’s
parse tree (Abstract Syntax Tree) with additional annotations

The rewriter applies rewrite rules, including view definitions.
Input is a Query, output is zero or more Querys

The planner takes a Query and produces a Plan, which
encodes how the query should be executed

A query plan is a tree of Plan nodes, each describing a
physical operation
Only needed for “optimizable” statements (INSERT, DELETE,
SELECT, UPDATE)

Executor

Each node in the plan tree describes a physical operation

Scan a relation, perform an index scan, join two relations,
perform a sort, apply a predicate, perform projection, . . .

The planner arranges the operations into a plan tree that
describes the data flow between operations

Tuples flow from the leaves of the tree to the root

Leaf nodes are scans: no input, produce a stream of tuples
Joins are binary operators: accept two inputs (child nodes),
produce a single output
The root of the tree produces the query’s result set

Therefore, the executor is “trivial”: simply ask the root plan
node to repeatedly produce result tuples

Executor

Each node in the plan tree describes a physical operation

Scan a relation, perform an index scan, join two relations,
perform a sort, apply a predicate, perform projection, . . .

The planner arranges the operations into a plan tree that
describes the data flow between operations

Tuples flow from the leaves of the tree to the root

Leaf nodes are scans: no input, produce a stream of tuples
Joins are binary operators: accept two inputs (child nodes),
produce a single output
The root of the tree produces the query’s result set

Therefore, the executor is “trivial”: simply ask the root plan
node to repeatedly produce result tuples

Query Optimization

SQL is (ostensibly) a declarative query language

The query specifies the properties the result set must satisfy,
not the procedure the DBMS must follow to produce the result
set

For a typical SQL query, there are many equivalent query plans

scan types: Seq scan, index scan, bitmap index scan

join order: Inner joins are commutative: reordered freely

join types: Sort-merge join, hash join, nested loops

aggregation: Hashed aggregation, aggregation by sorting

predicates: Predicate push down, evaluation order

rewrites: Subqueries and set operations → joins,
outer joins → inner joins, function inlining, . . .

Query Optimization

SQL is (ostensibly) a declarative query language

The query specifies the properties the result set must satisfy,
not the procedure the DBMS must follow to produce the result
set

For a typical SQL query, there are many equivalent query plans

scan types: Seq scan, index scan, bitmap index scan

join order: Inner joins are commutative: reordered freely

join types: Sort-merge join, hash join, nested loops

aggregation: Hashed aggregation, aggregation by sorting

predicates: Predicate push down, evaluation order

rewrites: Subqueries and set operations → joins,
outer joins → inner joins, function inlining, . . .

Tasks Of The Query Optimizer

Basic Optimizer Task

Of the many ways in which we could evaluate a query,
which would be the cheapest to execute?

Two Distinct Subproblems

1 Enumerate all the possible plans for a given query

2 Estimate the cost of a given query plan

In practice, too slow → do both steps at the same time

Tasks Of The Query Optimizer

Basic Optimizer Task

Of the many ways in which we could evaluate a query,
which would be the cheapest to execute?

Two Distinct Subproblems

1 Enumerate all the possible plans for a given query

2 Estimate the cost of a given query plan

In practice, too slow → do both steps at the same time

Stages in Query Optimization

The System R Algorithm

1 Rewrite the query to make it more amenable to optimization:
pull up subqueries, rewrite IN clauses, simplify constant
expressions, reduce outer joins, . . .

2 Determine the interesting ways to access each base relation

Remember the cheapest estimated access path, plus the
cheapest path for each distinct sort order

3 Determine the interesting ways to join each pair of relations

4 . . .

Stages in Query Optimization

The System R Algorithm

1 Rewrite the query to make it more amenable to optimization:
pull up subqueries, rewrite IN clauses, simplify constant
expressions, reduce outer joins, . . .

2 Determine the interesting ways to access each base relation

Remember the cheapest estimated access path, plus the
cheapest path for each distinct sort order

3 Determine the interesting ways to join each pair of relations

4 . . .

Stages in Query Optimization

The System R Algorithm

1 Rewrite the query to make it more amenable to optimization:
pull up subqueries, rewrite IN clauses, simplify constant
expressions, reduce outer joins, . . .

2 Determine the interesting ways to access each base relation

Remember the cheapest estimated access path, plus the
cheapest path for each distinct sort order

3 Determine the interesting ways to join each pair of relations

4 . . .

Stages in Query Optimization

The System R Algorithm

1 Rewrite the query to make it more amenable to optimization:
pull up subqueries, rewrite IN clauses, simplify constant
expressions, reduce outer joins, . . .

2 Determine the interesting ways to access each base relation

Remember the cheapest estimated access path, plus the
cheapest path for each distinct sort order

3 Determine the interesting ways to join each pair of relations

4 . . .

Storage Management

Tables → Files

Tables and indexes are stored in normal operating-system files

Each table/index divided into “segments” of at most 1GB

Tablespaces just control the filesystem location of segments

Files → Blocks

Each file is divided into blocks of BLCKSZ bytes each

8192 by default; compile-time constant

Blocks consist of items, such as heap tuples (in tables), or
index entries (in indexes), along with metadata

Tuple versions uniquely identified by triple (r , p, i): relation
OID, block number, offset within block; known as “ctid”

Storage Management

Tables → Files

Tables and indexes are stored in normal operating-system files

Each table/index divided into “segments” of at most 1GB

Tablespaces just control the filesystem location of segments

Files → Blocks

Each file is divided into blocks of BLCKSZ bytes each

8192 by default; compile-time constant

Blocks consist of items, such as heap tuples (in tables), or
index entries (in indexes), along with metadata

Tuple versions uniquely identified by triple (r , p, i): relation
OID, block number, offset within block; known as “ctid”

The Buffer Manager

Almost all I/O is not done directly: to access a page, a
process asks the buffer manager for it

The buffer manager implements a hash table in shared
memory, mapping page identifiers → buffers

If the requested page is in shared buffers, return it
Otherwise, ask the kernel for it and stash it in
shared buffers

If no free buffers, replace an existing one (which one?)
The kernel typically does its own I/O caching as well

Keep a pin on the page, to ensure it isn’t replaced while in use

The Buffer Manager

Almost all I/O is not done directly: to access a page, a
process asks the buffer manager for it

The buffer manager implements a hash table in shared
memory, mapping page identifiers → buffers

If the requested page is in shared buffers, return it
Otherwise, ask the kernel for it and stash it in
shared buffers

If no free buffers, replace an existing one (which one?)
The kernel typically does its own I/O caching as well

Keep a pin on the page, to ensure it isn’t replaced while in use

Concurrency Control

Table-level Locks

Also known as “lmgr locks”, “heavyweight locks”

Protect entire tables against concurrent DDL operations

Many different lock modes; matrix for determining if two
locks conflict

Automatic deadlock detection and resolution

Row-level Locks

Writers don’t block readers: MVCC

Writers must block writers: implemented via row-level locks

Implemented by marking the row itself (on disk)

Also used for SELECT FOR UPDATE, FOR SHARE

Concurrency Control

Table-level Locks

Also known as “lmgr locks”, “heavyweight locks”

Protect entire tables against concurrent DDL operations

Many different lock modes; matrix for determining if two
locks conflict

Automatic deadlock detection and resolution

Row-level Locks

Writers don’t block readers: MVCC

Writers must block writers: implemented via row-level locks

Implemented by marking the row itself (on disk)

Also used for SELECT FOR UPDATE, FOR SHARE

Concurrency Control: Low-Level Locks

LWLocks (“Latches”)

Protect shared data structures against concurrent access

Two lock modes: shared and exclusive (reader/writer)

No deadlock detection: should only be held for short durations

Spinlocks

LWLocks are implemented on top of spinlocks, which are in
turn a thin layer on top of an atomic test-and-set (TAS)
primitive provided by the platform

If an LWLock is contended, waiting is done via blocking on a
SysV semaphore; spinlocks just busy wait, then micro-sleep

Concurrency Control: Low-Level Locks

LWLocks (“Latches”)

Protect shared data structures against concurrent access

Two lock modes: shared and exclusive (reader/writer)

No deadlock detection: should only be held for short durations

Spinlocks

LWLocks are implemented on top of spinlocks, which are in
turn a thin layer on top of an atomic test-and-set (TAS)
primitive provided by the platform

If an LWLock is contended, waiting is done via blocking on a
SysV semaphore; spinlocks just busy wait, then micro-sleep

Organization of Source Tree

doc/: documentation, FAQs

src/
bin/: client programs (psql, pg dump, . . .)
include/: headers

catalog/: system catalog definitions

interfaces/: libpq, ecpg
pl/: procedural languages (PL/PgSQL, PL/Perl, . . .)
test/regress/: SQL regression tests

Makefiles

Makefile per directory (recursive make)

src/makefiles has platform-specific Makefiles

src/Makefile.global.in is the top-level Makefile

Backend Source Tree

Content of src/backend

access/: index implementations, heap access manager,
transaction management, write-ahead log

commands/: implementation of DDL commands

executor/: executor logic, implementation of executor nodes

libpq/: implementation of backend side of FE/BE protocol

optimizer/: query planner

parser/: lexer, parser, analysis phase

Backend Source Tree, cont.

Content of src/backend, cont.

postmaster/: postmaster, stats daemon, AV daemon, . . .

rewrite/: application of query rewrite rules

storage/: shmem, locks, bufmgr, storage management, . . .

tcop/: “traffic cop”, FE/BE query loop, dispatching from
protocol commands → implementation

utils/:

adt/: builtin data types, functions, operators
cache/: caches for system catalog lookups, query plans
hash/: in-memory hash tables
mmgr/: memory management
sort/: external sorting, TupleStore

Outline

1 Prerequisites
Why Should You Hack On PostgreSQL?
What Skills Will You Need?
What Tools Should You Use?

2 The Architecture of PostgreSQL
System Architecture
Components of the Backend

3 Common Code Conventions
Memory Management
Error Handling

4 Community Processes

5 Sample Patch

6 Conclusion

The Postgres Object System: Nodes

Postgres uses a simple object system with support for single
inheritance. The root of the class hierarchy is Node:

typedef struct typedef struct typedef struct

{ { {

NodeTag type; NodeTag type; Parent parent;

} Node; int a_field; int b_field;

} Parent; } Child;

This relies on a C trick: you can treat a Child * like a
Parent * since their initial fields are the same

Unfortunately, this can require a lot of ugly casting

The first field of any Node is a NodeTag, which can be used
to determine a Node’s specific type at runtime

Nodes, Cont.

Basic Node Utility Functions

Create a new Node: makeNode()

Run-time type testing via the IsA() macro

Test if two nodes are equal: equal()

Deep-copy a node: copyObject()

Serialise a node to text: nodeToString()

Deserialise a node from text: stringToNode()

Nodes, Cont.

Basic Node Utility Functions

Create a new Node: makeNode()

Run-time type testing via the IsA() macro

Test if two nodes are equal: equal()

Deep-copy a node: copyObject()

Serialise a node to text: nodeToString()

Deserialise a node from text: stringToNode()

Nodes, Cont.

Basic Node Utility Functions

Create a new Node: makeNode()

Run-time type testing via the IsA() macro

Test if two nodes are equal: equal()

Deep-copy a node: copyObject()

Serialise a node to text: nodeToString()

Deserialise a node from text: stringToNode()

Nodes, Cont.

Basic Node Utility Functions

Create a new Node: makeNode()

Run-time type testing via the IsA() macro

Test if two nodes are equal: equal()

Deep-copy a node: copyObject()

Serialise a node to text: nodeToString()

Deserialise a node from text: stringToNode()

Nodes, Cont.

Basic Node Utility Functions

Create a new Node: makeNode()

Run-time type testing via the IsA() macro

Test if two nodes are equal: equal()

Deep-copy a node: copyObject()

Serialise a node to text: nodeToString()

Deserialise a node from text: stringToNode()

Nodes, Cont.

Basic Node Utility Functions

Create a new Node: makeNode()

Run-time type testing via the IsA() macro

Test if two nodes are equal: equal()

Deep-copy a node: copyObject()

Serialise a node to text: nodeToString()

Deserialise a node from text: stringToNode()

Nodes: Hints

When you modify a node or add a new node, remember to
update

nodes/equalfuncs.c
nodes/copyfuncs.c

You may have to update nodes/outfuncs.c and
nodes/readfuncs.c if your Node is to be
serialised/deserialised

Grep for references to the node’s type to make sure you don’t
forget to update anything

When adding a new node, look at how similar nodes are
treated

Memory Management

Postgres uses hierarchical, region-based memory management,
and it absolutely rocks

backend/util/mmgr
Similar concept to Tridge’s talloc(), “arenas”, . . .

All memory allocations are made in a memory context

Default context of allocation: CurrentMemoryContext

palloc() allocates in CMC

MemoryContextAlloc() allocates in a given context

Memory Management, cont.

Allocations can be freed individually via pfree()

When a memory context is reset or deleted, all allocations in
the context are released

Resetting contexts is both faster and less error-prone than
releasing individual allocations

Contexts are arranged in a tree; deleting/resetting a context
deletes/resets its child contexts

Memory Management Conventions

You should sometimes pfree() your allocations

If the context of allocation is known to be short-lived, don’t
bother with pfree()
If the code might be invoked in an arbitrary memory context
(e.g. utility functions), you should pfree()
You can’t pfree() an arbitrary Node (no “deep free”)

The exact rules are a bit hazy :-(

Memory Leaks

Be aware of the memory allocation assumptions made by
functions you call

Memory leaks, per se, are rare in the backend

All memory is released eventually
A “leak” occurs when memory is allocated in a too-long-lived
memory context: e.g. allocating some per-tuple resource in a
per-txn context
MemoryContextStats() useful for locating the guilty context

(Almost) never use malloc() in the backend

Error Handling

Most errors reported by ereport() or elog()
ereport() is for user-visible errors, and allows more fields to
be specified (SQLSTATE, detail, hint, etc.)

Implemented via longjmp; conceptually similar to exceptions
in other languages

elog(ERROR) walks back up the stack to the closest error
handling block; that block can either handle the error or
re-throw it
The top-level error handler aborts the current transaction and
resets the transaction’s memory context

Releases all resources held by the transaction, including files,
locks, memory, and buffer pins

Guidelines For Error Handling

Custom error handlers can be defined via PG TRY()

Think about error handling!

Never ignore the return values of system calls

Should your function return an error code, or ereport() on
failure?

Probably ereport() to save callers the trouble of checking for
failure
Unless the caller can provide a better (more descriptive) error
message, or might not consider the failure to be an actual error

Use assertions (Assert) liberally to detect programming
mistakes, but never errors the user might encounter

Outline

1 Prerequisites
Why Should You Hack On PostgreSQL?
What Skills Will You Need?
What Tools Should You Use?

2 The Architecture of PostgreSQL
System Architecture
Components of the Backend

3 Common Code Conventions
Memory Management
Error Handling

4 Community Processes

5 Sample Patch

6 Conclusion

Mailing Lists

The vast majority of communication occurs on mailing lists

pgsql-hackers is the main list
pgsql-patches and pgsql-committers can be useful to
learn from

Written communication skills are important

Good developers are often good writers

Some developers are on IRC; internals questions are welcome

irc.freenode.net, #postgresql

Your First Patch

Step 1: Research and preparation

Is your new feature actually useful? Does it just scratch your
itch, or is it of general value?
Does it need to be implemented in the backend, or can it live
in pgfoundry, contrib/, or elsewhere?
Does the SQL standard define similar or equivalent
functionality?

What about Oracle, DB2, . . . ?

Has someone suggested this idea in the past?

Search the archives and TODO list

Most ideas are bad
Don’t take the TODO list as gospel

Sending A Proposal

Step 2: Send a proposal for your feature to pgsql-hackers
Patches that appear without prior discussion risk wasting your
time

Discuss your proposed syntax and behaviour

Consider corner cases, and how the feature will relate to other
parts of PostgreSQL (consistency is good)
Will any system catalog changes be required?
Backward-compatibility?

Try to reach a consensus with -hackers on how the feature
ought to behave

Implementation

Step 3: Begin implementing the feature

A general strategy is to look at how similar parts of the
system function

Don’t copy and paste (IMHO)

Common source of errors

Instead, read through similar sections of code to try to
understand how they work, and the APIs they are using
Implement (just) what you need, refactoring the existed APIs if
required

Ask for advice as necessary (-hackers or IRC)

Write down the issues you encounter as you write the code,
include the list when you submit the patch

Consider posting work-in-progress versions of the patch

Testing, Documentation

Step 4: Update tools

For example, if you’ve modified DDL syntax, update psql’s
tab completion
Add pg dump support if necessary

Step 5: Testing

Make sure the existing regression tests don’t fail
No compiler warnings
Add new regression tests for the new feature

Step 6: Update documentation

Writing good documentation is more important than getting
the DocBook details completely correct
Add new index entries, if appropriate
Check documentation changes visually in a browser

Submitting The Patch

Step 7: Submit the patch
Use context diff format: diff -c

Unified diffs are okay for SGML changes

First, review every hunk of the patch

Is this hunk necessary?
Does it needlessly change existing code or whitespace?
Does it have any errors? Does it fail in corner cases? Is there
a more elegant way to do this?

Work with a code reviewer to make any necessary changes
If your patch falls through the cracks, be persistent

The developers are busy and reviewing patches is difficult,
time-consuming, and unglamourous work

Outline

1 Prerequisites
Why Should You Hack On PostgreSQL?
What Skills Will You Need?
What Tools Should You Use?

2 The Architecture of PostgreSQL
System Architecture
Components of the Backend

3 Common Code Conventions
Memory Management
Error Handling

4 Community Processes

5 Sample Patch

6 Conclusion

The TABLESAMPLE Clause

The TABLESAMPLE clause is defined by SQL:2003 and
implemented by SQL Server and DB2

Oracle calls it SAMPLE, slightly different syntax

Example query:

SELECT avg(salary)

FROM emp TABLESAMPLE SYSTEM (50);

TODO item: “estimated count(*)”

SELECT count(*) * 10

FROM t TABLESAMPLE SYSTEM (10);

Straightforward to implement, but requires modifying some
interesting parts of the system

http://neilconway.org/talks/hacking/ottawa/tablesample.patch

http://neilconway.org/talks/hacking/ottawa/tablesample.patch

The TABLESAMPLE Clause

The TABLESAMPLE clause is defined by SQL:2003 and
implemented by SQL Server and DB2

Oracle calls it SAMPLE, slightly different syntax

Example query:

SELECT avg(salary)

FROM emp TABLESAMPLE SYSTEM (50);

TODO item: “estimated count(*)”

SELECT count(*) * 10

FROM t TABLESAMPLE SYSTEM (10);

Straightforward to implement, but requires modifying some
interesting parts of the system

http://neilconway.org/talks/hacking/ottawa/tablesample.patch

http://neilconway.org/talks/hacking/ottawa/tablesample.patch

The TABLESAMPLE Clause

The TABLESAMPLE clause is defined by SQL:2003 and
implemented by SQL Server and DB2

Oracle calls it SAMPLE, slightly different syntax

Example query:

SELECT avg(salary)

FROM emp TABLESAMPLE SYSTEM (50);

TODO item: “estimated count(*)”

SELECT count(*) * 10

FROM t TABLESAMPLE SYSTEM (10);

Straightforward to implement, but requires modifying some
interesting parts of the system

http://neilconway.org/talks/hacking/ottawa/tablesample.patch

http://neilconway.org/talks/hacking/ottawa/tablesample.patch

What Does The Standard Say?

Deciphering the SQL standard is notoriously difficult

I usually start with the index

The BERNOULLI sample method sounds hard to implement

REPEATABLE provides a way to seed the random number
generator

Implementation Ideas

How Should We Implement Sampling?

Simple approach: sequentially walk the heap, decide whether
to skip a block using random() and the sampling percentage

Therefore, add “sample scan” as a new scan type, analogous
to sequential scan or index scan

Deficiencies

1 Non-uniform sampling when either

row size is non-uniform
distribution of live tuples is non-uniform

2 Consumes a lot of entropy

3 Could be optimized to reduce random I/O

Implementation Ideas

How Should We Implement Sampling?

Simple approach: sequentially walk the heap, decide whether
to skip a block using random() and the sampling percentage

Therefore, add “sample scan” as a new scan type, analogous
to sequential scan or index scan

Deficiencies

1 Non-uniform sampling when either

row size is non-uniform
distribution of live tuples is non-uniform

2 Consumes a lot of entropy

3 Could be optimized to reduce random I/O

Behavioral Questions

1 Can we specify TABLEAMPLE for non-base relation FROM-clause
items? (Subqueries, SRFs, . . .)

2 Can we specify TABLESAMPLE for UPDATE or DELETE?

3 Can we sample from the results of an index scan?

4 How does this interact with inheritance? Joins?

Behavioral Questions

1 Can we specify TABLEAMPLE for non-base relation FROM-clause
items? (Subqueries, SRFs, . . .)

2 Can we specify TABLESAMPLE for UPDATE or DELETE?

3 Can we sample from the results of an index scan?

4 How does this interact with inheritance? Joins?

Behavioral Questions

1 Can we specify TABLEAMPLE for non-base relation FROM-clause
items? (Subqueries, SRFs, . . .)

2 Can we specify TABLESAMPLE for UPDATE or DELETE?

3 Can we sample from the results of an index scan?

4 How does this interact with inheritance? Joins?

Behavioral Questions

1 Can we specify TABLEAMPLE for non-base relation FROM-clause
items? (Subqueries, SRFs, . . .)

2 Can we specify TABLESAMPLE for UPDATE or DELETE?

3 Can we sample from the results of an index scan?

4 How does this interact with inheritance? Joins?

Implementation Plan

1 Modify the grammar to add support for parsing the
TABLESAMPLE clause

2 Modify the nodes of the parse tree to allow TABLESAMPLE to
be encoded in the AST

3 Create a new executor node for sample-based scans of a
relation

4 Modify the planner to choose sample scans when appropriate,
and to estimate the cost of evaluating a sample scan

5 Implement the guts of the SampleScan executor node

6 Add support for REPEATABLE

7 Add support for DELETE and UPDATE

8 Update documentation

Can’t easily add regression tests

Implementation Plan

1 Modify the grammar to add support for parsing the
TABLESAMPLE clause

2 Modify the nodes of the parse tree to allow TABLESAMPLE to
be encoded in the AST

3 Create a new executor node for sample-based scans of a
relation

4 Modify the planner to choose sample scans when appropriate,
and to estimate the cost of evaluating a sample scan

5 Implement the guts of the SampleScan executor node

6 Add support for REPEATABLE

7 Add support for DELETE and UPDATE

8 Update documentation

Can’t easily add regression tests

Implementation Plan

1 Modify the grammar to add support for parsing the
TABLESAMPLE clause

2 Modify the nodes of the parse tree to allow TABLESAMPLE to
be encoded in the AST

3 Create a new executor node for sample-based scans of a
relation

4 Modify the planner to choose sample scans when appropriate,
and to estimate the cost of evaluating a sample scan

5 Implement the guts of the SampleScan executor node

6 Add support for REPEATABLE

7 Add support for DELETE and UPDATE

8 Update documentation

Can’t easily add regression tests

Implementation Plan

1 Modify the grammar to add support for parsing the
TABLESAMPLE clause

2 Modify the nodes of the parse tree to allow TABLESAMPLE to
be encoded in the AST

3 Create a new executor node for sample-based scans of a
relation

4 Modify the planner to choose sample scans when appropriate,
and to estimate the cost of evaluating a sample scan

5 Implement the guts of the SampleScan executor node

6 Add support for REPEATABLE

7 Add support for DELETE and UPDATE

8 Update documentation

Can’t easily add regression tests

Grammar Modifications

Parsing TABLESAMPLE itself is quite easy

Add some new keywords: TABLESAMPLE and REPEATABLE
must be made semi-reserved to avoid shift-reduce conflicts

Checking SelectStmt reveals that relation expr is the
production for a base relation in the FROM clause with an
optional alias and inheritance spec

Unfortunately, relation expr is also used by DDL
commands, so create a new production and use it in the
places we want to allow TABLESAMPLE

Parse Node Updates

New parse node for the data TABLESAMPLE clause

Need to attach new parse node to the AST somehow

The parser constructs a RangeVar for each FROM clause entry,
so use that

Range Table

The parse-analysis phase constructs a “range table” consisting of
the FROM clause elements

When converting the FROM clause RVs into range table entries
(RTEs), attach the TableSampleInfo

Parse Node Updates

New parse node for the data TABLESAMPLE clause

Need to attach new parse node to the AST somehow

The parser constructs a RangeVar for each FROM clause entry,
so use that

Range Table

The parse-analysis phase constructs a “range table” consisting of
the FROM clause elements

When converting the FROM clause RVs into range table entries
(RTEs), attach the TableSampleInfo

Optimizer Terminology

RelOptInfo: Per-relation planner state. For each base rel or join,
stores the estimated row count, row width, cheapest
path, . . .

Path: Planner state for a particular way accessing a relation
(or join relation); each RelOptInfo has a list of
candidate paths

Plan: A “finalized” output path: a node of the plan tree
passed to the executor

Once the planner has decided on the optimal
Path tree, produce a corresponding Plan tree

Optimizer Terminology

RelOptInfo: Per-relation planner state. For each base rel or join,
stores the estimated row count, row width, cheapest
path, . . .

Path: Planner state for a particular way accessing a relation
(or join relation); each RelOptInfo has a list of
candidate paths

Plan: A “finalized” output path: a node of the plan tree
passed to the executor

Once the planner has decided on the optimal
Path tree, produce a corresponding Plan tree

Optimizer Modifications

We need only modify stage 1 of the System R algorithm:
finding the cheapest interesting paths for each base relation

Joins between sample scans not fundamentally different than
normal joins
We don’t need a SamplePath node; just use Path

Only consider sample scans when a TABLESAMPLE clause is
specified

Simple cost estimation: assume we need to do a single I/O for
each sampled page

Plan Trees

Review: the planner produces a tree of Plan nodes

Plan nodes are treated as immutable by the executor

The executor constructs a tree of PlanState nodes to
describe the run-time state of a plan-in-execution

Each PlanState is associated with exactly one Plan node
PlanState.plan holds a PlanState’s associated Plan node

The “Iterator” API
Implemented By Each Executor Node

Mandatory

InitNode: Given a Plan tree, construct a PlanState tree

ProcNode: Given a PlanState tree, return next result tuple

Some plan nodes support bidirectional scans

EndNode: Shutdown a PlanState tree, releasing resources

Optional

ReScan: Reset a PlanState so that it reproduces its output

MarkPos: Record the current position of a PlanState

RestrPos: Restore the position of a PlanState to last mark

The “Iterator” API
Implemented By Each Executor Node

Mandatory

InitNode: Given a Plan tree, construct a PlanState tree

ProcNode: Given a PlanState tree, return next result tuple

Some plan nodes support bidirectional scans

EndNode: Shutdown a PlanState tree, releasing resources

Optional

ReScan: Reset a PlanState so that it reproduces its output

MarkPos: Record the current position of a PlanState

RestrPos: Restore the position of a PlanState to last mark

Executor Terminology

Block: A page on disk. Identified by a BlockNumber

Buffer: A page in memory. The buffer manager loads blocks
from disk into buffers (shared buffers)

OffsetNumber: Identifies an item within a page

Datum: An instance of a data type in memory

HeapTuple: A collection of Datums with a certain schema

EState: Run-time state for a single instance of the executor

Projection: The act of applying a target list

The Executor’s TupleTable

Tuples are passed around the executor using TupleTableSlots

Different kinds of tuples:
Pointers into buffer pages

The output of a scan node, no projection
Need to drop pin on buffer when finished with tuple

Pointers into heap-allocated memory

Result of applying an expression: projection, SRFs, . . .
Can be “minimal” tuples: no MVCC metadata needed
Need to pfree() tuple when finished

“Virtual” tuples

The TupleTableSlot abstraction papers over all these details

Implementing The Executor Node
Initialization

Most of this is boilerplate code :-(

Initialize executor machinery needed to evaluate quals and do
projection

Read-lock the relation: no DDL changes allowed while we’re
scanning

Implementing REPEATABLE

Simple implementation: pass the repeat seed to srandom()

Wrong: if the execution of multiple sample scans is
interleaved, they will stomp on the other’s PRNG state

Therefore, use initstate() to give each sample scan its own
private PRNG state

Implementing REPEATABLE

Simple implementation: pass the repeat seed to srandom()

Wrong: if the execution of multiple sample scans is
interleaved, they will stomp on the other’s PRNG state

Therefore, use initstate() to give each sample scan its own
private PRNG state

Supporting UPDATE and DELETE

Implementation of UPDATE and DELETE

Run the executor to get “result tuples”

Mark the result tuples as expired (“deleted by my
transaction”) on disk

If UPDATE, insert a new tuple

TABLESAMPLE support

Quite easy: basically comes for free!

relation expr is already used by the DELETE and UPDATE
Modify to use relation expr opt sample

Hackup parse-analysis to attach TableSampleInfo

Supporting UPDATE and DELETE

Implementation of UPDATE and DELETE

Run the executor to get “result tuples”

Mark the result tuples as expired (“deleted by my
transaction”) on disk

If UPDATE, insert a new tuple

TABLESAMPLE support

Quite easy: basically comes for free!

relation expr is already used by the DELETE and UPDATE
Modify to use relation expr opt sample

Hackup parse-analysis to attach TableSampleInfo

Possible Improvements

1 Implement the BERNOULLI sample method

2 Support non-integer sample percentage and repeat seed

3 Take advantage of optimizer statistics to produce a more
accurate sample

4 Support mark-and-restore; allow a SampleScan to be
re-scanned when possible

5 Provide information about the degree of confidence in the
sampled results

6 “Page at a time” scan mode

Possible Improvements

1 Implement the BERNOULLI sample method

2 Support non-integer sample percentage and repeat seed

3 Take advantage of optimizer statistics to produce a more
accurate sample

4 Support mark-and-restore; allow a SampleScan to be
re-scanned when possible

5 Provide information about the degree of confidence in the
sampled results

6 “Page at a time” scan mode

Possible Improvements

1 Implement the BERNOULLI sample method

2 Support non-integer sample percentage and repeat seed

3 Take advantage of optimizer statistics to produce a more
accurate sample

4 Support mark-and-restore; allow a SampleScan to be
re-scanned when possible

5 Provide information about the degree of confidence in the
sampled results

6 “Page at a time” scan mode

Possible Improvements

1 Implement the BERNOULLI sample method

2 Support non-integer sample percentage and repeat seed

3 Take advantage of optimizer statistics to produce a more
accurate sample

4 Support mark-and-restore; allow a SampleScan to be
re-scanned when possible

5 Provide information about the degree of confidence in the
sampled results

6 “Page at a time” scan mode

Possible Improvements

1 Implement the BERNOULLI sample method

2 Support non-integer sample percentage and repeat seed

3 Take advantage of optimizer statistics to produce a more
accurate sample

4 Support mark-and-restore; allow a SampleScan to be
re-scanned when possible

5 Provide information about the degree of confidence in the
sampled results

6 “Page at a time” scan mode

Possible Improvements

1 Implement the BERNOULLI sample method

2 Support non-integer sample percentage and repeat seed

3 Take advantage of optimizer statistics to produce a more
accurate sample

4 Support mark-and-restore; allow a SampleScan to be
re-scanned when possible

5 Provide information about the degree of confidence in the
sampled results

6 “Page at a time” scan mode

Outline

1 Prerequisites
Why Should You Hack On PostgreSQL?
What Skills Will You Need?
What Tools Should You Use?

2 The Architecture of PostgreSQL
System Architecture
Components of the Backend

3 Common Code Conventions
Memory Management
Error Handling

4 Community Processes

5 Sample Patch

6 Conclusion

Next Steps

1 Sign up to the development lists

2 Setup your local development environment

3 Participate in development discussions

Read design proposals, ask questions/give feedback
Try to reproduce (and fix!) reported bugs
Look at proposed patches
Help out with administrativia, contribute to the documentation

4 Read the code!

5 Look for a small project that piques your interest, and get
started!

Q & A

Any questions?

	Prerequisites
	Why Should You Hack On PostgreSQL?
	What Skills Will You Need?
	What Tools Should You Use?

	The Architecture of PostgreSQL
	System Architecture
	Components of the Backend

	Common Code Conventions
	Memory Management
	Error Handling

	Community Processes
	Sample Patch
	Conclusion

