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Complexity of Objects

Example

Which of these is more complex?

1 1111111111111111

2 1101010100011101

Intuition

The first has a simple description: “print 1 16 times”.

There is no (obvious) description for the second string that is
essentially shorter than listing its digits.

Kolmogorov complexity formalizes this intuitive notion of
complexity.
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Complexity As Predictive Power

Solomonoff’s Idea

Suppose a scientist takes a sequence of measurements:
x = {0, 1}∗. The scientist would like to formulate a hypothesis
that predicts the future content of the sequence.

Among the infinite number of possible hypotheses,
which should be preferred?

Occam’s Razor

Choose the simplest hypothesis that is consistent with the data

Neil Conway CISC 876: Kolmogorov Complexity
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Algorithmic Information Theory

“Algorithmic information theory is the result of putting
Shannon’s information theory and Turing’s computability
theory into a cocktail shaker and shaking vigorously.”
—G. J. Chaitin

AIT is a subfield of both information theory and computer
science

(Almost) simultaneously and independently developed by
1962: introduced by R. J. Solomonoff as part of work on
inductive inference
1963: A. N. Kolmogorov
1965: G. J. Chaitin (while an 18-year old undergraduate!)

Also known as Kolmogorov-Chaitin complexity, descriptional
complexity, program-size complexity, . . .
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Incompressibility and Randomness

Definition

Definition

The Kolmogorov complexity of a string x is the length of the
smallest program that outputs x , relative to some model of
computation. That is,

Cf (x) = min
p
{|p| : f (p) = x}

for some computer f .

Informally, C (x) measures the information content, degree of
redundancy, degree of structure, of x
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Definition
Incompressibility and Randomness

Universality

Problem

Cf (x) depends on both f and x . Can we measure the inherent
information in x , independent of the choice of f ?

Theorem (Invariance Theorem)

There exists a universal description method ψ0, such that:

Cψ0(x) ≤ Cψ(x) + c

for some constant c that depends on ψ and ψ0 (but not on x).

Proof Idea.

Follows from the existence of a universal Turing machine: accept a
description of ψ and ψ’s program for x

Neil Conway CISC 876: Kolmogorov Complexity
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Definition
Incompressibility and Randomness

Implications

Theorem

For all universal description methods f , g:

|Cf (x)− Cg (x)| ≤ c

for some constant c that depends only on f and g.

This is crucial to the usefulness of the complexity measure

The universal description method does not necessarily give the
shortest description of each object, but no other description
method can improve on it by more than an additive constant

We typically write C (x) = Cψ0(x), use Turing machines as ψ0,
and limit our analysis to within an additive constant

Neil Conway CISC 876: Kolmogorov Complexity
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Incompressibility and Randomness

Conditional Complexity

Definition

The conditional Kolmogorov complexity of a string x , relative to a
string y and a model of computation f , is:

Cf (x |y) = min{|p| : Cf (p, y) = x}
Cf (x) = Cf (x |ε)

C (x |y) is the size of the minimal program for x when started
with input y
C (x : y) = C (x)− C (x |y) describes the information y
contains about x
When C (x : y) = C (x), x and y are algorithmically
independent

Neil Conway CISC 876: Kolmogorov Complexity
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Definition
Incompressibility and Randomness

Simple Results

Upper Bound On C (x)

There is a constant c , such that for all x :

C (x) ≤ |x |+ c

(Proving a lower bound on C (x) is not as straightforward.)

Structure and Complexity

For each constant k, there is a constant c such that for all x :

C (xk) ≤ C (x) + c

Neil Conway CISC 876: Kolmogorov Complexity
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Incompressibility and Randomness

Definition

A string x is incompressible if

C (x) ≥ |x |

Maximal information content, no redundancy: algorithmically
random

Short programs encode patterns in non-random strings

Algorithmic randomness is not identical to the intuitive
concept of randomness

There is a short program for generating the digits of π, so they
are highly “non-random”
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Incompressibility and Randomness

Are There Incompressible Strings?

Theorem

For all n, there exists an incompressible string of length n

Proof.

There are 2n strings of length n and fewer than 2n descriptions
that are shorter than n:

n−1∑
i=0

2i = 2n − 1 < 2n

Neil Conway CISC 876: Kolmogorov Complexity
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Incompressibility and Randomness

Incompressibility Theorem

We can extend the previous counting argument to show that the
vast majority of strings are mostly incompressible

Definition

A string x is c-incompressible if C (x) ≥ |x | − c , for some constant
c .

Theorem

The number of strings of length n that are c-incompressible is at
least

2n − 2n−c+1 + 1

Neil Conway CISC 876: Kolmogorov Complexity
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Incompressibility and Randomness

Example

For c = 10:

The fraction of all strings of length n with complexity less than
n − 10 is smaller than:

2n−11+1

2n
=

1

1024
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Incompressibility and Randomness

Consequences

Fact

The probability that an infinite sequence obtained by independent
tosses of a fair coin is algorithmically random is 1.

Fact

The minimal program for any string is algorithmically random.

Neil Conway CISC 876: Kolmogorov Complexity
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Noncomputability Theorem

Theorem

C (x) is not a computable function.

Proof.

Will be presented shortly.
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Conclusions

Given any concrete string, we cannot show that it is random

Apparent randomness may be the result of a hidden structure
Wolfram’s conjecture: much/all apparent physical randomness
is ultimately the result of structure

“Almost all” strings are algorithmically random, but we
cannot exhibit any particular string that is random

There are relatively few short programs, and relatively few
objects of low complexity

Neil Conway CISC 876: Kolmogorov Complexity
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Prefix Complexity
Resource-Bounded K-Complexity

Additive Complexity

Theorem

C (x , y) = C (x) + C (y) + O(log(min(C (x),C (y))))

Proof Idea.

1 (≤): Construct a TM that accepts descriptions (programs) for
x , y , and a way to distinguish them

The length of the shorter input

2 (≥): It can be shown that we cannot do better than this for
all but finitely many x , y
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Prefix Complexity
Resource-Bounded K-Complexity

Consequences

This is unfortunate: we would like K-complexity to be
subadditive

C (x) + C (y) should bound C (x , y) from above

We would also like to combine subprograms by simple
concatenation
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Prefix Complexity
Resource-Bounded K-Complexity

Self-Delimiting Strings

Definition

A string is self-delimiting if it contains its own length.

Procedure

Prepend the string’s length to the string

Problem: how can we distinguish the end of the length from
the start of the string itself?

Solution: duplicate every bit of the length, then mark the end
of the length with 01 or 10

A binary string of length n can be encoded in self-delimiting
form in n + 2 log n bits

Neil Conway CISC 876: Kolmogorov Complexity
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Resource-Bounded K-Complexity

Prefix Complexity

Most modern work on Kolmogorov complexity actually uses
prefix complexity, a variant formulated by L. A. Levin (1974)

K (x) is the size of the minimal self-delimiting program that
outputs x ; K (x) is subadditive

No self-delimiting string is the prefix of another

Various other helpful theoretical properties
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Prefix Complexity
Resource-Bounded K-Complexity

Summary of Results

upper bounds: K (x) ≤ l(x) + 2 log l(x), K (x |l(x)) = l(x)

extra information: K (x |y) ≤ K (x) ≤ K (x , y)

subadditive: K (x , y) ≤ K (x) + K (y)

symmetry of information: K (x , y) ≤ K (y , x)

lower bound: K (x) ≥ l(x) for “almost all” x
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Resource-Bounded Kolmogorov Complexity

Definition

Intuitively, a string has high logical depth if it is “superficially
random, but subtly redundant”: the string has low complexity, but
only for a computational model with access to a lot of resources

We can consider the complexity of a string, relative to a
computational model with bounded space or time resources

Typically harder to prove results than with unbounded
K-complexity
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Invariance Theorem with Resource Bounds

Theorem (Invariance Theorem)

There exists a universal description method ψ0, such that for all
other description methods ψ we have a constant c such that:

C ct log n,cs
ψ0

(x) = C t,s
ψ (x) + c

Problem

Considerably weaker Invariance Theorem: multiplicative constant
factor in space complexity, multiplicative logarithmic factor in time
complexity.
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Relation To Other Fields

Shannon’s information theory

The information required to select an element from a
previously agreed-upon set of alternatives

Minimum Description Length (MDL)

Place limitations on the computation model so the MDL of a
string is computable
Closer to learning theory and Solomonoff’s work on inductive
inference

Circuit complexity

Kolmogorov complexity considers Turing machines rather than
Boolean circuits
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Incompressibility Method
Gödel’s Incompleteness Theorem

Incompressibility Method

A general-purpose method for formal proofs; often an alternative
to counting arguments or probabilistic arguments

Typical Proof Structure.

To show that “almost all” the objects in a given class have a
certain property:

1 Choose a random object from the class

2 This object is incompressible, with probability 1
3 Prove that the property holds for the object

1 Assume that the property does not hold
2 Show that we can use the property to compress the object,

yielding a contradiction

Neil Conway CISC 876: Kolmogorov Complexity



Introduction
Basic Properties

Variants of K-Complexity
Applications

Summary

Incompressibility Method
Gödel’s Incompleteness Theorem

Simple Example

Theorem

L = {0k1k : k ≥ 1} is not regular.

Proof Idea.

1 Choose k such that k is Kolmogorov-random

2 Assume that 0k1k is a regular language, and is accepted by
some finite automaton A

3 After input 0k , A is in state q

4 A and q form a concise description of k: running A from state
q accepts only on an input of k consecutive 1s

5 This contradicts the assumption that k is incompressible

Neil Conway CISC 876: Kolmogorov Complexity
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Properties of Formal Languages

Pumping lemmas are the standard tool for showing that a
language is not in REG, DCFL, CFL, . . .

Kolmogorov complexity provides an alternative way to
characterize membership in these classes

Can prove both regularity and non-regularity

Neil Conway CISC 876: Kolmogorov Complexity
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Incompressibility Method
Gödel’s Incompleteness Theorem

K-Complexity Analog to the Pumping Lemma for REG

Lemma (Kolmogorov-Complexity-Regularity (KCR))

Let L be a regular language. Then for some c depending only on L
and for each x, if y is the nth string in lexicographical order
Lx = {y : xy ∈ L}, then K (y) ≤ K (n) + c.

Proof.

Any string y such that xy ∈ L, can be described by:

1 the description of the FA that accepts L

2 the state of the FA after processing x

3 the number n

Neil Conway CISC 876: Kolmogorov Complexity
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Incompressibility Method
Gödel’s Incompleteness Theorem

Example of KCR Lemma

Fact

L = {0n : n is prime } is not regular.

Proof.

Assume that L is regular. Set xy = 0p and x = 0p′
, where p is the

k’th prime and p′ is the (k − 1)th prime. It follows that y = 0p−p′
,

n = 1, and K (p − p′) = O(1).

This is a contradiction: the difference between consecutive primes
rises unbounded, so there are an unbounded number of integers
with O(1) descriptions.

Neil Conway CISC 876: Kolmogorov Complexity



Introduction
Basic Properties

Variants of K-Complexity
Applications

Summary

Incompressibility Method
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Example of KCR Lemma

Fact

L = {0n : n is prime } is not regular.

Proof.

Assume that L is regular. Set xy = 0p and x = 0p′
, where p is the

k’th prime and p′ is the (k − 1)th prime. It follows that y = 0p−p′
,

n = 1, and K (p − p′) = O(1).

This is a contradiction: the difference between consecutive primes
rises unbounded, so there are an unbounded number of integers
with O(1) descriptions.
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Other Applications of the Incompressibility Method

Average-case complexity analysis

Avoids the need to explicitly model the probability distribution
of inputs
E.g. heapsort

Lower bounds analysis for problems

Properties of random graphs

Typically yields proofs that are shorter and more elegant than
alternative techniques
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Historical Context: Formal Axiomatic Systems

Turn of the 20th century: what constitutes a valid proof?

David Hilbert’s program: can we formalize mathematics?

Hilbert’s 2nd Problem (1900)

Construct a single formal axiomatic system that contains all true
arithmetical statements over the natural numbers:

A finite number of axioms, and a deterministic inference
procedure

Consistent: no contradictions can be derived from the axioms

Complete: all true statements can be derived from the axioms
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Gödel’s Incompleteness Theorem

Gödel’s Incompleteness Theorems

Theorem (1st Incompleteness Theorem)

Any computably enumerable, consistent formal axiomatic system
containing elementary arithmetic is incomplete: there exist true,
but unprovable (within the system) statements.

Theorem (2nd Incompleteness Theorem)

The consistency of a formal axiomatic system that contains
arithmetic cannot be proven within the system.
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Gödel’s Incompleteness Theorems

Theorem (1st Incompleteness Theorem)

Any computably enumerable, consistent formal axiomatic system
containing elementary arithmetic is incomplete: there exist true,
but unprovable (within the system) statements.

Theorem (2nd Incompleteness Theorem)

The consistency of a formal axiomatic system that contains
arithmetic cannot be proven within the system.

Neil Conway CISC 876: Kolmogorov Complexity



Introduction
Basic Properties

Variants of K-Complexity
Applications

Summary

Incompressibility Method
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Consequences

For each true, unprovable statement, we can “solve” the
problem by adding a new axiom to the system

There are an infinity of such unprovable statements, so we
never achieve completeness

Hilbert’s program is not achievable: any single axiomatization
of number theory cannot capture all number-theoretical truths

However, does not invalidate formalism itself: many formal
models are now necessary rather than a single one

“Provability is a weaker notion than truth.” —Douglas
Hofstadter

. . . and much more philosophical speculation in the same vein
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Gödel’s Incompleteness Theorem

Consequences

For each true, unprovable statement, we can “solve” the
problem by adding a new axiom to the system

There are an infinity of such unprovable statements, so we
never achieve completeness

Hilbert’s program is not achievable: any single axiomatization
of number theory cannot capture all number-theoretical truths

However, does not invalidate formalism itself: many formal
models are now necessary rather than a single one

“Provability is a weaker notion than truth.” —Douglas
Hofstadter

. . . and much more philosophical speculation in the same vein

Neil Conway CISC 876: Kolmogorov Complexity



Introduction
Basic Properties

Variants of K-Complexity
Applications

Summary

Incompressibility Method
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Connection to Kolmogorov Complexity

Gödel’s proof relies on an ingenious technique: in any formal
system that contains arithmetic, we can construct a true
theorem in the formal system that encodes the assertion “This
theorem is not provable within the system”

Neat, but an artificial construction

How widespread are these true, unprovable statements?

K-complexity allows a simple proof of Gödel’s incompleteness
results that sheds more light on the power of formal systems
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Complexity of a Formal System

Definition

The complexity of a formal system is the size of the minimal
program that lists all the theorems in the system.

Equivalently, a formal system’s complexity is the size of the
minimal encoding of the alphabet, axioms, and inference
procedure

Neil Conway CISC 876: Kolmogorov Complexity



Introduction
Basic Properties

Variants of K-Complexity
Applications

Summary

Incompressibility Method
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Solving the Halting Problem

Theorem

A formal system of complexity n can solve the Halting Problem for
programs smaller than n bits.

Proof.

The system can contain at most n bits of axioms. This is enough
space to specify the number of n-bit programs that halt, or
equivalently to identify the halting program with the longest
runtime.

Corollary

A finite formal axiomatic system can only prove finitely many
statements of the form C (x) > m.
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Corollary: K(x) Is Uncomputable

Theorem

No formal system of complexity n can prove that an object x has
K (x) > n.

Proof Idea.

If the formal system can prove that x has complexity n′ = K (x),
this encodes a description of x in n bits. Since n′ > n, we have a
contradiction.
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Gödel’s Incompleteness Theorem

AIT Restatement of Incompleteness

Theorem

There are true but unprovable statements in any consistent formal
axiomatic system of finite size.

Proof Idea.

Follows from the earlier two results.
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Summary

Kolmogorov complexity measures the absolute information
content of a string, to within an additive constant

The uncomputability of K-complexity is an obstacle

The incompressibility method is a useful (advanced) proof
technique

AIT allows a simple proof of the Incompleteness theorem, as
well as more insight into the nature of formal axiomatic
systems
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