
Inside the
PostgreSQL Query Optimizer

Neil Conway

neilc@samurai.com

Fujitsu Australia Software Technology

PostgreSQL Query Optimizer Internals – p. 1



Outline

Introduction to query optimization

Outline of query processing

Basic planner algorithm

Planning specific SQL constructs

Questions welcome throughout

PostgreSQL Query Optimizer Internals – p. 2



What is query optimization?

SQL is declarative; the user specifies what the query
returns, not how it should be executed

There are many equivalences in SQL:
Joins can be applied in any order
Predicates can be evaluated in any order
Subselects can be transformed into joins

Several different methods of doing the same operation:
Three core join algorithms (nested loops, hash join,
merge join)
Two aggregation algorithms (hashing, sorting)
Two scan algorithms (index scan, sequential scan)

For a non-trivial query there are many alternative plans

PostgreSQL Query Optimizer Internals – p. 3



Outline of query processing

Client connects to postmaster via TCP or unix domain
socket, communicates via frontend-backend protocol

fork new backend to handle connection

Authentication in new backend

Enter simple query loop
Client submits query
Backend executes query, returns result set

PostgreSQL Query Optimizer Internals – p. 4



Query loop

1. Lex and parse — flex, bison
Input: query string
Output: “raw parsetree”
No database access or semantic analysis

2. Analysis
Input: raw parsetree
Output: Query

Essentially, annotated parsetree — do database
lookups for metadata

3. Rewriter
Input: Query
Output: One or more Query

Apply rewrite rules: CREATE RULE, CREATE VIEW
PostgreSQL Query Optimizer Internals – p. 5



Query loop, cont.

Already done: we understand the syntax of the query
and have looked up associated metadata and applied
some basic semantic checks

If this is a “utility command” (CREATE, ALTER, DROP,
etc.), hand off to the implementation of the command

Otherwise, remaining work:
Decide how to evaluate the query, produce a Plan

Evaluate the Plan and return result set to client

The query planner is what determines the best way to
evaluate a query; also known as the “query optimizer”.
This requires:
1. Determining the set of possible plans
2. Choosing the “best” plan from this set

PostgreSQL Query Optimizer Internals – p. 6



Representation of query plans

We represent “how” to execute a query as a tree of plan
nodes; each node is a single operation (join, disk scan,
sort, etc.)

Tuples flow from the leaves of the tree (disk scans) up
to the root

Results delivered to parent node “on demand”
To get a row, a node “pulls” on its child node, which
in turns pulls on its child nodes as needed

To produce result set, executor just pulls on root node
Guts of query execution is in the implementation of
plan nodes

In general, plan nodes are asymmetric: left and right
inputs treated differently

PostgreSQL Query Optimizer Internals – p. 7



Example query

Database stores CVS commit history

A commit modifies n files; each such modification is an
“action”

Query: find the timestamp of the latest commit to
modify given a file f

SELECT c.tstamp
FROM commits c, actions a
WHERE a.file IN

(SELECT id FROM files
WHERE path = ’...’)

AND a.commit_id = c.id
ORDER BY c.tstamp DESC
LIMIT 1;

target list
range table
qualifier
IN-clause subquery

join predicate
sort order
limit expression

PostgreSQL Query Optimizer Internals – p. 8



Example query plan

LIMIT

SORT
key: commits.tstamp

JOIN
method: nested loops

key: action.commit_id = commit.id

JOIN
method: nested loops

key: file.id = action.file

AGGREGATE
method: hashing

key: files.id

SCAN files
method: index scan

key: path = ‘...’

SCAN actions
method: index scan
key: file = LEFT.id

SCAN commits
method: index scan

key: id = LEFT.commit_id

PostgreSQL Query Optimizer Internals – p. 9



What makes a good plan?

The planner chooses between plans based on their
estimated cost

Assumption: disk IO dominates the cost of query
processing. Therefore, pick the plan that requires least
disk IO

Random IO is (much) more expensive than
sequential IO on modern hardware

Estimate I/O required by trying to predict the size of
intermediate result sets, using database statistics
gathered by ANALYZE

This is an imperfect science, at best

Distinguish between “startup cost” (IOs required for first
tuple) and “total cost”

PostgreSQL Query Optimizer Internals – p. 10



General optimization principles

The cost of a node is a function of its input: the number
of rows produced by child nodes and the distribution of
their values. Therefore:
1. Reordering plan nodes changes everything
2. A poor choice near the leaves of the plan tree could

spell disaster
Keep this in mind when debugging poorly
performing plans

3. Apply predicates early, so as to reduce the size of
intermediate result sets

Worth keeping track of sort order — given sorted input,
certain plan nodes are cheaper to execute

Planning joins effectively is essential

PostgreSQL Query Optimizer Internals – p. 11



Planner algorithm

Conceptually, three phases:
1. Enumerate all the available plans
2. Assess the cost of each plan
3. Choose the cheapest plan

Naturally this would not be very efficient

“System R algorithm” is commonly used — a dynamic
programming algorithm invented by IBM in the 1970s

Basic idea: find “good” plans for a simplified query with
n joins. To find good plans for n + 1 joins, join each plan
with an additional relation. Repeat

PostgreSQL Query Optimizer Internals – p. 12



System R algorithm

1. Consider each base relation. Consider sequential scan
and available index scans, applying predicates that
involve this base relation. Remember:

Cheapest unordered plan
Cheapest plan for each sort order

2. While candidate plans have fewer joins than required,
join each candidate plan with a relation not yet in that
plan. Retain:

Cheapest unordered plan for each distinct set of
relations
Cheapest plan with a given sort order for each
distinct set of relations

PostgreSQL Query Optimizer Internals – p. 13



System R algorithm, cont.

Grouping (aggregation) and sorting is done at the end

Consider “left-deep”, “bushy”, and “right-deep” plans
(some planners only consider left-deep plans)

JOIN

JOIN A

JOIN B

C D

JOIN

JOIN JOIN

A B C D

JOIN

A JOIN

B JOIN

C D

The number of plans considered explodes as the
number of joins increases; for queries with many joins
(≥ 12 by default), a genetic algorithm is used (“GEQO”)

Non-exhaustive, non-deterministic search of
possible left-deep join orders

PostgreSQL Query Optimizer Internals – p. 14



Planning outer joins

Outer join: like an inner join, except include unmatched
join tuples in the result set

Inner join operator is both commutative and associative:
A 1 B ≡ B 1 A, A 1 (B 1 C) ≡ (A 1 B) 1 C

In general, outer joins are neither associative nor
commutative, so we can’t reorder them

Main difference is fewer options for join order; a pair of
relations specified by OUTER JOIN is effectively a
single base relation in the planner algorithm

Sometimes outer joins can be converted to inner joins:
SELECT * FROM a LEFT JOIN b WHERE b.x = k

Tip: you can force join order for inner joins by using
JOIN syntax with join_collapse_limit set to 1

PostgreSQL Query Optimizer Internals – p. 15



Planning subqueries

Three types of subqueries: IN-clause, FROM-list, and
expression

We always “pull up” IN-clause subqueries to become a
special kind of join in the parent query

We try to pull up FROM-list subqueries to become joins
in the parent query

This can be done if the subquery is simple: no
GROUP BY, aggregates, HAVING, ORDER BY

Otherwise, evaluate subquery via separate plan
node (SubqueryScan) — akin to a sequential scan

PostgreSQL Query Optimizer Internals – p. 16



FROM-list subquery example

SELECT * FROM t1,
(SELECT * FROM t2 WHERE t2.x = 10) t2

WHERE t1.id = t2.id;

-- converted by the optimizer into
SELECT * FROM t1, t2
WHERE t1.id = t2.id and t2.x = 10;

Subquery pullup allows the planner to reuse all the
machinery for optimizing joins

Integrating subquery qualifiers into the parent query
can mean we can optimize the parent query better

PostgreSQL Query Optimizer Internals – p. 17



Planning expression subqueries

Produce nested Plan by recursive invocation of planner

An “uncorrelated” subquery does not reference any
variables from its parent query; it will therefore remain
constant for a given database snapshot.

SELECT foo FROM bar WHERE bar.id =
(SELECT baz.id FROM baz
WHERE baz.quux = 100);

If uncorrelated, only need to evaluate the subquery
once per parent query

$var = SELECT id FROM baz WHERE quux = 100;
SELECT foo FROM bar WHERE id = $var;

If correlated, we need to repeatedly evaluate the
subquery during the execution of the parent query

PostgreSQL Query Optimizer Internals – p. 18



Planning functions

Planner mostly treats functions as “black boxes”
For example, set-returning functions in the FROM list
are represented as a separate plan node
(FunctionScan)
Can’t effectively predict the cost of function
evaluation or result size of a set-returning function

We can inline a function call if:
Defined in SQL
Used in an expression context (not FROM list — room
for improvement)
Sufficiently simple: “SELECT ...”

If invoked with all-constant parameters and not marked
“volatile”, we can preevaluate a function call

PostgreSQL Query Optimizer Internals – p. 19



Function inlining example

CREATE FUNCTION mul(int, int) RETURNS int AS
‘SELECT $1 * $2’ LANGUAGE sql;

SELECT * FROM emp
WHERE mul(salary, age) > 1000000;

-- after function inlining, essentially
SELECT * FROM emp

WHERE (salary * age) > 1000000;

The inlined form of the query allows the optimizer to
look inside the function definition to predict the number
of rows satisfied by the predicate

Also avoids function call overhead, although this is
small anyway

PostgreSQL Query Optimizer Internals – p. 20



Planning set operations

Planning for set operations is somewhat primitive

Generate plans for child queries, then add a node to
concatenate the result sets together

Some set operations require more work:
UNION: sort and remove duplicates
EXCEPT [ ALL ], INTERSECT [ ALL ]: sort
and remove duplicates, then produce result set via a
linear scan

Note that we never consider any alternatives, so
planning is pretty simple (patches welcome)

PostgreSQL Query Optimizer Internals – p. 21



Potential improvements

Hard:

Database statistics for correlation between columns

Function optimization

Rewrite GEQO

Crazy:

Online statistics gathering

Executor → optimizer online feedback

Parallel query processing on a single machine (one
query on multiple CPUs concurrently)

Distributed query processing (over the network)

PostgreSQL Query Optimizer Internals – p. 22



Questions?

Thank you.

PostgreSQL Query Optimizer Internals – p. 23



Using EXPLAIN

EXPLAIN prints the plan chosen for a given query, plus
the estimated cost and result set size of each plan node

Primary planner debugging tool; EXPLAIN ANALYZE
compares planner’s guesses to reality

Executes the query with per-plan-node
instrumentation

PostgreSQL Query Optimizer Internals – p. 24



EXPLAIN output

EXPLAIN ANALYZE SELECT c.tstamp FROM commits c, actions a WHERE a.file IN

(SELECT id FROM files WHERE path = ‘...’)

AND a.commit_id = c.id ORDER BY c.tstamp DESC LIMIT 1;

Limit (cost=135.79..135.80 rows=1 width=8)

(actual time=4.458..4.459 rows=1 loops=1)

-> Sort (cost=135.79..135.84 rows=20 width=8)

(actual time=4.455..4.455 rows=1 loops=1)

Sort Key: c.tstamp

-> Nested Loop (cost=5.91..135.36 rows=20 width=8)

(actual time=0.101..4.047 rows=178 loops=1)

-> Nested Loop (cost=5.91..74.84 rows=20 width=4)

(actual time=0.078..0.938 rows=178 loops=1)

-> HashAggregate (cost=5.91..5.91 rows=1 width=4)

(actual time=0.050..0.052 rows=1 loops=1)

-> Index Scan on files (cost=0.00..5.91 rows=1 width=4)

(actual time=0.035..0.038 rows=1 loops=1)

-> Index Scan on actions a (cost=0.00..68.68 rows=20 width=8)

(actual time=0.022..0.599 rows=178 loops=1)

-> Index Scan on commits c (cost=0.00..3.01 rows=1 width=12)

(actual time=0.012..0.013 rows=1 loops=178)

Total runtime: 4.666 ms

PostgreSQL Query Optimizer Internals – p. 25


	Outline
	What is query optimization?
	Outline of query processing
	Query loop
	Query loop, cont.
	Representation of query plans
	Example query
	Example query plan
	What makes a good plan?
	General optimization principles
	Planner algorithm
	System R algorithm
	System R algorithm, cont.
	Planning outer joins
	Planning subqueries
	FROM-list subquery example
	Planning expression subqueries
	Planning functions
	Function inlining example
	Planning set operations
	Potential improvements
	Questions?
	Using EXPLAIN
	EXPLAIN output

