Inside the
PostgreSQL Query Optimizer

Neil Conway

nei l c@anur ai . com

Fujitsu Australia Software Technology



© o o o @

Outline

Introduction to query optimization
Outline of query processing
Basic planner algorithm

Planning specific SQL constructs
Questions welcome throughout

|

PostgreSQL Query Optimizer Internals — p. 2



What Is query optimization?

-

SQL is declarative; the user specifies what the query
returns, not how it should be executed

There are many equivalences in SQL.:

» Joins can be applied in any order

» Predicates can be evaluated in any order
» Subselects can be transformed Iinto joins

Several different methods of doing the same operation:

» Three core join algorithms (nested loops, hash join,
merge join)

» Two aggregation algorithms (hashing, sorting)

» Two scan algorithms (index scan, seguential scan)

For a non-trivial query there are many alternative plans J

PostgreSQL Query Optimizer Internals — p. 3



Outline of query processing

-

Client connects to post nast er via TCP or unix domain
socket, communicates via frontend-backend protocol

f or k new backend to handle connection
Authentication in new backend

Enter simple query loop
» Client submits query
» Backend executes guery, returns result set

|

PostgreSQL Query Optimizer Internals — p. 4



Query loop
-

1. Lex and parse — f | ex, bi son
# Input: query string
# Output: “raw parsetree”
# No database access or semantic analysis

2. Analysis
#® Input: raw parsetree

# Output: Query
s Essentially, annotated parsetree — do database
lookups for metadata

3. Rewriter
® Input: Query
# OQOutput: One or more Query
#® Apply rewrite rules: CREATE RULE, CREATE VI EW J

PostgreSQL Query Optimizer Internals — p. 5



o

Query loop, cont.
-

Already done: we understand the syntax of the query
and have looked up associated metadata and applied
some basic semantic checks

If this Is a “utility command” (CREATE, ALTER, DROP,
etc.), hand off to the implementation of the command

Otherwise, remaining work:

» Decide how to evaluate the guery, produce a Pl an
» Evaluate the Pl an and return result set to client
The query planner is what determines the best way to

evaluate a query; also known as the “query optimizer”.
This requires:

1. Determining the set of possible plans
2. Choosing the “best” plan from this set J

PostgreSQL Query Optimizer Internals — p. 6



¥

Representation of query plans
-

We represent “how” to execute a query as a tree of plan
nodes; each node is a single operation (join, disk scan,
sort, etc.)

Tuples flow from the leaves of the tree (disk scans) up

to the root

Results delivered to parent node “on demand”

» To get a row, a node “pulls” on its child node, which
In turns pulls on its child nodes as needed

To produce result set, executor just pulls on root node

» Guts of query execution is in the implementation of
plan nodes

In general, plan nodes are asymmetric: left and right
inputs treated differently J

PostgreSQL Query Optimizer Internals — p. 7



Example query

-

# Database stores CVS commit history T

® A commit modifies n files: each such modification Is an

“action”

# Query: find the timestamp of the latest commit to

modify given a file f

SELECT c.tstanp
FROM commts c, actions a
VWHERE a.file IN
(SELECT id FROM fil es
VWHERE path = "...")
AND a.commt _id = c.id
ORDER BY c.tstanmp DESC

LLI MT 1;

target list

range table

qgualifier

| N-clause subquery

join predicate
sort order
limit expression J

PostgreSQL Query Optimizer Internals — p. 8



Example query plan

- o -

SORT
key: commits.tstamp

T

JOIN
method: nested loops
key: action.commit_id = commit.id

_— T~

JOIN SCAN commits
method: nested loops method: index scan
key: file.id = action.file key: id = LEFT.commit_id
AGGREGATE SCAN actions
method: hashing method: index scan
key: files.id key: file= LEFT.id
SCAN files

method: index scan

key: path="...

PostgreSQL Query Optimizer Internals — p. 9




What makes a good plan?
-

The planner chooses between plans based on their
estimated cost

Assumption: disk IO dominates the cost of query
processing. Therefore, pick the plan that requires least
disk 10

o Random IO is (much) more expensive than
sequential IO on modern hardware

Estimate 1/O required by trying to predict the size of
Intermediate result sets, using database statistics
gathered by ANALYZE

» This is an imperfect science, at best

Distinguish between “startup cost” (I0s required for first
tuple) and “total cost” J

PostgreSQL Query Optimizer Internals — p. 10



General optimization principles

- N

#® The cost of a node is a function of its input: the number
of rows produced by child nodes and the distribution of
their values. Therefore:

1. Reordering plan nodes changes everything

2. A poor choice near the leaves of the plan tree could
spell disaster
s Keep this in mind when debugging poorly
performing plans

3. Apply predicates early, so as to reduce the size of
Intermediate result sets

# Worth keeping track of sort order — given sorted input,
certain plan nodes are cheaper to execute

L’ Planning joins effectively is essential J

PostgreSQL Query Optimizer Interna Is—p. 11



Planner algorithm

Conceptually, three phases:

1. Enumerate all the available plans
2. Assess the cost of each plan

3. Choose the cheapest plan

Naturally this would not be very efficient

“*System R algorithm” is commonly used — a dynamic
programming algorithm invented by IBM in the 1970s

Basic idea: find “good” plans for a simplified query with
n joins. To find good plans for n + 1 joins, join each plan
with an additional relation. Repeat

|

PostgreSQL Query Optimizer Interna Is—p. 12



System R algorithm
- -

1. Consider each base relation. Consider sequential scan
and available index scans, applying predicates that
iInvolve this base relation. Remember:

#® Cheapest unordered plan
#® Cheapest plan for each sort order

2. While candidate plans have fewer joins than required,
join each candidate plan with a relation not yet in that
plan. Retain:

# Cheapest unordered plan for each distinct set of
relations

#® Cheapest plan with a given sort order for each
distinct set of relations

o |

PostgreSQL Query Optimizer Internals — p. 13



System R algorithm, cont.

- N

# Grouping (aggregation) and sorting Is done at the end

# Consider “left-deep”, “bushy”, and “right-deep” plans
(some planners only consider left-deep plans)

# The number of plans considered explodes as the
number of joins increases; for gueries with many joins
(> 12 by default), a genetic algorithm is used (“GEQQ”)

o Non-exhaustive, non-deterministic search of
o possible left-deep join orders o

PostgreSQL Query Optimizer Interna Is—p. 14



Planning outer joins

-

Outer join: like an inner join, except include unmatched
join tuples in the result set

Inner join operator is both commutative and associative:
AXB=BNXA AX(BXC)=(AXB)XC(

In general, outer joins are neither associative nor
commutative, so we can’t reorder them

Main difference is fewer options for join order; a pair of
relations specified by OQUTER JO N s effectively a
single base relation in the planner algorithm

Sometimes outer joins can be converted to inner joins:
SELECT » FROM a LEFT JON b WHERE b. x =k

Tip: you can force join order for inner joins by using
JO Nsyntax with j oi n_col | apse_linit settol

PostgreSQL Query Optimizer Internals — p. 15



Planning subqueries

- N

#® Three types of subqueries: | N-clause, FROMlist, and
expression

# We always “pull up” I N-clause subgueries to become a
special kind of join In the parent query

# We try to pull up FROMIist subqueries to become joins
In the parent query

» This can be done if the subquery Is simple: no
GROUP BY, aggregates, HAVI NG ORDER BY

s Otherwise, evaluate subquery via separate plan
node (Subquer yScan) — akin to a sequential scan

o |

PostgreSQL Query Optimizer Internals — p. 16



FROM-list subquery example

fSELECT * FROM t 1, T

(SELECT » FROMt2 WHERE t2.x = 10) t2
VWHERE t1.1d = t2.1d;

-- converted by the optimzer into
SELECT » FROMt1l, t2

WHERE t1.id = t2.id and t2.x = 10;

# Subquery pullup allows the planner to reuse all the
machinery for optimizing joins

# Integrating subquery qualifiers into the parent query
can mean we can optimize the parent query better

o |

PostgreSQL Query Optimizer Interna Is—p. 17



Planning expression subqueries

-

Produce nested Pl an by recursive invocation of planner

An “uncorrelated” subquery does not reference any
variables from its parent query; it will therefore remain
constant for a given database snapshot.

SELECT foo FROM bar WHERE bar.id =
( SELECT baz.id FROM baz
VWHERE baz. quux = 100);

If uncorrelated, only need to evaluate the subquery
once per parent query

$var = SELECT id FROM baz WHERE quux = 100;
SELECT foo FROM bar WHERE id = $var;

If correlated, we need to repeatedly evaluate the
subguery during the execution of the parent query J

PostgreSQL Query Optimizer Internals — p. 18



Planning functions

- N

# Planner mostly treats functions as “black boxes”

s For example, set-returning functions in the FROMIist
are represented as a separate plan node
(Funct i onScan)

» Can't effectively predict the cost of function
evaluation or result size of a set-returning function
® \We can inline a function call if:
» Defined in SQL

s Used in an expression context (not FROMIist — room
for improvement)

s Sufficiently simple: “SELECT ..”

# |f invoked with all-constant parameters and not marked
L “volatile”, we can preevaluate a function call J

PostgreSQL Query Optimizer Internals — p. 19



Function inlining example

fCREATE FUNCTION mul (int, int) RETURNS i nt AS T
*SELECT $1 > $2° LANGUACGE sql;
SELECT * FROM enp
VWHERE nul (sal ary, age) > 1000000;

-- after function inlining, essentially
SELECT » FROM enmp
VWHERE (salary *» age) > 1000000;

# The inlined form of the query allows the optimizer to
look inside the function definition to predict the number
of rows satisfied by the predicate

# Also avoids function call overhead, although this is
small anyway

o |

PostgreSQL Query Optimizer Interna Is—p. 20



Planning set oper ations

- N

# Planning for set operations is somewhat primitive

# Generate plans for child queries, then add a node to
concatenate the result sets together

# Some set operations require more work:
» UNI ON: sort and remove duplicates

s EXCEPT [ ALL ], INTERSECT [ ALL ]: sort
and remove duplicates, then produce result set via a

linear scan

# Note that we never consider any alternatives, so
planning is pretty simple (patches welcome)

o |

PostgreSQL Query Optimizer Internals — p. 21



Potential Improvements

L N

® Database statistics for correlation between columns

ard:

# Function optimization

® Rewrite GEQO

Crazy:

# Online statistics gathering

# Executor — optimizer online feedback

# Parallel query processing on a single machine (one
guery on multiple CPUs concurrently)

# Distributed guery processing (over the network)

o |

PostgreSQL Query Optimizer Internals — p. 22



Questions?

Thank you.



Using EXPLAIN

f.ﬂ EXPLAI N prints the plan chosen for a given query, plus T
the estimated cost and result set size of each plan node

# Primary planner debugging tool; EXPLAI N ANALYZE
compares planner’s guesses to reality

» Executes the query with per-plan-node
Instrumentation

o |

PostgreSQL Query Optimizer Internals — p. 24



EXPLAIN output

EXPLAIN ANALYZE SELECT c.tstamp FROM commits c¢, actions a WHERE a.file IN
(SELECT id FROM files WHERE path = ¢...’)

AND a.commit_id = c.id ORDER BY c.tstamp DESC LIMIT 1;

Limit (cost=135.79..135.80 rows=1 width=8)
(actual time=4.458..4.459 rows=1 loops=1)
-> Sort (cost=135.79..135.84 rows=20 width=8)
(actual time=4.455..4.455 rows=1 loops=1)
Sort Key: c.tstamp
-> Nested Loop (cost=5.91..135.36 rows=20 width=8)
(actual time=0.101..4.047 rows=178 loops=1)
—-> Nested Loop (cost=5.91..74.84 rows=20 width=4)
(actual time=0.078..0.938 rows=178 loops=1)
-> HashAggregate (cost=5.91..5.91 rows=1 width=4)
(actual time=0.050..0.052 rows=1 loops=1)
-> Index Scan on files (cost=0.00..5.91 rows=1 width=4)
(actual time=0.035..0.038 rows=1 loops=1)
-> Index Scan on actions a (cost=0.00..68.68 rows=20 width=8)

(actual time=0.022..0.599 rows=178 loops=1)
-> Index Scan on commits ¢ (cost=0.00..3.01 rows=1 width=12)

(actual time=0.012..0.013 rows=1 loops=178)
Total runtime: 4.666 ms

PostgreSQL Query Optimizer Internals — p. 25



	Outline
	What is query optimization?
	Outline of query processing
	Query loop
	Query loop, cont.
	Representation of query plans
	Example query
	Example query plan
	What makes a good plan?
	General optimization principles
	Planner algorithm
	System R algorithm
	System R algorithm, cont.
	Planning outer joins
	Planning subqueries
	FROM-list subquery example
	Planning expression subqueries
	Planning functions
	Function inlining example
	Planning set operations
	Potential improvements
	Questions?
	Using EXPLAIN
	EXPLAIN output

