An Introduction To Data Stream Query Processing

Neil Conway <nconway@truviso.com>

Truviso, Inc.

May 24, 2007

Neil Conway (Truviso)

Data Stream Query Processing

May 24, 2007 1 / 45

Outline

- 1 The Need For Data Stream Processing
- 2 Stream Query Languages
- Query Processing Techniques For Streams
 - System Architecture
 - Shared Evaluation
 - Adaptive Tuple Routing
 - Overload Handling

- Open Source
- Proprietary
- 5 Demo

Outline

1 The Need For Data Stream Processing

- 2 Stream Query Languages
- 3 Query Processing Techniques For Streams
 - System Architecture
 - Shared Evaluation
 - Adaptive Tuple Routing
 - Overload Handling

4 Current Choices For A DSMS

- Open Source
- Proprietary
- 5 Demo

6 Q & A

What's wrong with database systems?

What's wrong with database systems? Nothing, but they aren't the right solution to every problem

What's wrong with database systems?

Nothing, but they aren't the right solution to every problem

What are some problems for which a traditional DBMS is an awkward fit?

Financial Analysis

- Electronic trading is now commonplace
 - Trading volume continues to increase rapidly
- Algorithmic trading: detect advantageous market conditions, automatically execute trades
 - Latency is key
- Visualization
 - A hard problem in itself

- Electronic trading is now commonplace
 - Trading volume continues to increase rapidly
- Algorithmic trading: detect advantageous market conditions, automatically execute trades
 - Latency is key
- Visualization
 - A hard problem in itself

Typical Queries

- 5-minute rolling average, volume-waited average price (VWAP)
- Comparison between sector averages and portfolio averages over time
- Implement models provided by quantitive analysis

- Network volume continues to increase rapidly
- Custom solutions are possible, but roll-your-own is expensive
 - Ad-hoc queries would be nice
- Can we build generic infrastructure for these kinds of monitoring applications?

Pervasive Sensors

"As the cost of micro sensors continues to decline over the next decade, we could see a world in which everything of material significance gets sensor-tagged." – Mike Stonebraker

- Military applications: real-time command and control
- Healthcare
- Habitat monitoring
- Manufacturing

Real-Time Decision Support

Turnaround-time for traditional data warehouses is often too slow

• "Business Activity Monitoring" (BAM)

Real-Time Decision Support

Turnaround-time for traditional data warehouses is often too slow

• "Business Activity Monitoring" (BAM)

Fraud Detection

- Sophisticated, cross-channel fraud
- Real-time

Real-Time Decision Support

Turnaround-time for traditional data warehouses is often too slow

• "Business Activity Monitoring" (BAM)

Fraud Detection

- Sophisticated, cross-channel fraud
- Real-time

Online Gaming

- Detect malicious behavior
- Monitor quality of service

Database Systems

Mostly static data, *ad-hoc* one-time queries

- Fire the queries at the data, return result sets
- "Store and query"
- Focus: concurrent reads & writes, efficient use of I/O, maximize transaction throughput, transactional consistency, historical analysis

Database Systems

Mostly static data, ad-hoc one-time queries

- Fire the queries at the data, return result sets
- "Store and query"
- Focus: concurrent reads & writes, efficient use of I/O, maximize transaction throughput, transactional consistency, historical analysis

Data Stream Systems

Mostly transient data, continuous queries

- Fire the data at the queries, incrementally update result streams
- Data rates often exceed disk throughput

- Data stream processing emerged from the database community
 - Early 90's: "active databases" with triggers
- Complex Event Processing is another approach to the same problems
 - Different nomenclature and background
 - Often similar in practice

Outline

The Need For Data Stream Processing

2 Stream Query Languages

- 3 Query Processing Techniques For Streams
 - System Architecture
 - Shared Evaluation
 - Adaptive Tuple Routing
 - Overload Handling

4 Current Choices For A DSMS

- Open Source
- Proprietary

5 Demo

6 Q & A

• A stream is an infinite sequence of (*tuple*, *timestamp*) pairs

- Append-only
- New type of database object
- The timestamp defines a total order over the tuples in a stream
 - In practice: require that stream tuples have a special CQTIME column
- Different approaches to building stream processing systems
 - This talk: relation-oriented DSMS. Specifically, TelegraphCQ, Truviso, StreamBase, ...

- Exactly 1 column must have a CQTIME constraint
 - CQTIME can be system-generated or user-provided
- With user-provided timestamps, system must cope with out-of-order tuples
 - "Slack" specifies maximum out-of-orderness

Example Query

CREATE STREAM trades (
<pre>symbol varchar(5),</pre>		
price real,		
volume integer,		
tstamp timestamp CQTIME USER GENERATED SLACK '1 minute'		
) TYPE UNARCHIVED;		

Raw Streams

Stream tuples are injected into the system by an external data source

- E.g. stock tickers, sensor data, network interface, ...
- Both push and pull models have been explored

Raw Streams

Stream tuples are injected into the system by an external data source

- E.g. stock tickers, sensor data, network interface, ...
- Both push and pull models have been explored

Derived Streams

Defined by a query expression that yields a stream

Archived Streams

Allows historical and real-time stream content to be combined in a single database object Pragmatism: relational query languages are well-established

- Relational query evaluation techniques are well-understood
- Everyone knows SQL
- Therefore, add stream-oriented extensions to SQL
 - Pioneering work: CQL from Stanford STREAM project

• Pragmatism: relational query languages are well-established

- Relational query evaluation techniques are well-understood
- Everyone knows SQL
- Therefore, add stream-oriented extensions to SQL
 - Pioneering work: CQL from Stanford STREAM project

Kinds Of Operators

- Relation \rightarrow Relation: Plain Old SQL
- Stream \rightarrow Relation: Periodically produce a relation from a stream
- Relation \rightarrow Stream: Produce stream from changes to a relation

Note that $S \rightarrow S$ operators are not provided.

Continuous Queries

Fundamental Difference

The result of a continuous query is an unbounded stream, not a finite relation

Fundamental Difference

The result of a continuous query is an unbounded stream, not a finite relation

Typical Query

Split infinite stream into pieces via windows

• $S \rightarrow R$

- Compute analysis for the current window, comparison with prior windows or historical data
 - $R \rightarrow R$
- Onvert result of analysis into result stream
 - $R \rightarrow S$
 - Often implicit (use defaults)

Stream \rightarrow Relation Operators: Windows

- Streams are infinite: at any given time, examine a finite sub-set
- Apply window operator to stream to periodically produce visible sets of tuples

Stream \rightarrow Relation Operators: Windows

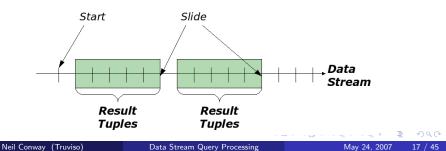
- Streams are infinite: at any given time, examine a finite sub-set
- Apply window operator to stream to periodically produce visible sets of tuples

Properties of Sliding Windows

Range: "Width" of the window. Units: rows or time.

Slide: How often to emit new visible sets. Units: rows or time.

Start: When to start emitting results.



Description

Every second, return the total volume of trades in the previous second.

Query	
SELECT	sum(volume) AS volume,
	advance_agg(qtime) AS windowtime
FROM	<pre>trades < VISIBLE '1 second' ADVANCE '1 second' ></pre>

Description

Every 5 seconds, return the volume-adjusted price of MSFT for the last 1 minute of trades.

Query	
SELECT	<pre>sum(price * volume) / sum(volume) AS vwap, sum(volume) AS volume, advance_agg(qtime) AS windowtime</pre>
FROM WHERE	<pre>trades < VISIBLE '1 minute' ADVANCE '5 seconds' > symbol = 'MSFT'</pre>

Aggregation

Useful aggregate: advance_agg(CQTIME)

- Timestamp that marks the end of the current window
- Similar aggregates for "beginning of window", "middle of window" might also be useful

Aggregation

Useful aggregate: advance_agg(CQTIME)

- Timestamp that marks the end of the current window
- Similar aggregates for "beginning of window", "middle of window" might also be useful

Other Window Types

Landmark: Fixed left edge, "elastic" right edge. Periodically reset. ("All stock trades after 9AM today.")

Partitioned: Divide stream into sub-streams based on partitioning key(s), then apply another $S \rightarrow R$ operator to the sub-streams.

Types of Operators

ISTREAM: the tuples added to a relation

RSTREAM: all the tuples in a relation

DSTREAM: the tuples removed from relation

Types of Operators

ISTREAM: the tuples added to a relation

RSTREAM: all the tuples in a relation

DSTREAM: the tuples removed from relation

Defaults

- ISTREAM for queries without aggregation/grouping
- RSTREAM for queries with aggregation/grouping
- DSTREAM is rarely useful

Common Requirement

Compare stream tuples with historical data

- System must provide both tables and streams!
- Elegantly modeled as a join between a table and a stream

Common Requirement

Compare stream tuples with historical data

- System must provide both tables and streams!
- Elegantly modeled as a join between a table and a stream

Implementation

- Stream is the right (outer) join operand; left (inner) operand is arbitrary Postgres subplan
 - For each stream tuple, join against non-continuous subplan

Description

Every 3 seconds, compute the total value of high-volume trades made on stocks in the S & P 500 in the past 5 seconds.

Example Query

SELECT	T.symbol, sum(T.price * T.volume)
FROM	s_and_p_500 S,
	<pre>trades T < VISIBLE '5 sec' ADVANCE '3 sec' ></pre>
WHERE	T.symbol = S.symbol
AND	T.volume > 5000
GROUP BY	T.symbol

- The tuples in a stream can be viewed as a series of events
 - E.g. "The temperature in the room is 20° ", $25^\circ,\,30^\circ,\,\ldots$
- The output of a continuous query is another series of events, typically higher-level or more complex
 - E.g. "The room is on fire."

- The tuples in a stream can be viewed as a series of events
 - E.g. "The temperature in the room is 20° ", $25^\circ,\,30^\circ,\,\ldots$
- The output of a continuous query is another series of events, typically higher-level or more complex
 - E.g. "The room is on fire."
- Therefore, streams can be composed in various ways:
 - Stream views
 - Macro semantics
 - Derived streams
 - Subqueries
 - Active tables

- A derived stream is a database object defined by a persistent continuous query
- Unlike a streaming view, a derived stream is always active
- Similar to a materialized view

Description

Every 3 seconds, compute the "volume-weighted average price" (VWAP) for all stocks traded in the past 5 seconds.

Query

CREATE STRE	AM vwap (symbol varchar(5),
	vwap float,
	vtime timestamp cqtime) AS
(SELECT	symbol,
	<pre>sum(price * volume) / sum(volume),</pre>
	advance_agg(qtime)
FROM	<pre>trades < VISIBLE '5 seconds' ADVANCE '3 seconds' ></pre>
GROUP BY	symbol);

- One-time subqueries can be used in continuous queries, of course
- Continuous subqueries are planned and executed as independent queries
 - Essentially inline derived streams
- Require that subqueries yielding streams specify CQTIME
- Planned: WITH-clause subqueries

- An active table is a table with an associated continuous query
- Two modes of operation:

Append: New stream tuples appended to table at each window Replace: At each new window, truncate previous table contents

Example Query	
SELECT	'Shoplifting!', D.loc, D.id
FROM	Store S C D PARTITION BY id
WHERE	S.loc = 'shelf' and C.loc = 'checkout'
	AND D.loc = 'door'
EVENT	AND (FOLLOWS(S, D, '1 hour'),
	NOT PRECEDES(C, D, '1 hour'));

Image: A matrix

- 1 The Need For Data Stream Processing
- 2 Stream Query Languages

3 Query Processing Techniques For Streams

- System Architecture
- Shared Evaluation
- Adaptive Tuple Routing
- Overload Handling

4 Current Choices For A DSMS

- Open Source
- Proprietary
- 5 Demo

6 Q & A

Adaptivity

Static query planning is undesirable for long-running queries

• Either replan or use adaptive planning

Adaptivity

Static query planning is undesirable for long-running queries

• Either replan or use adaptive planning

Shared Processing

Essential for good performance: 100s of queries not uncommon

• Long-lived queries make this more feasible

Adaptivity

Static query planning is undesirable for long-running queries

• Either replan or use adaptive planning

Shared Processing

Essential for good performance: 100s of queries not uncommon

• Long-lived queries make this more feasible

Graceful Overload Handling

Stream data rates are often highly variable

- Often too expensive to provision for peak data rate
- Therefore, must handle overload gracefully

- Modified version of PostgreSQL
- One-time queries executed normally
- Continuous queries planned and executed by the CqRuntime process

- Modified version of PostgreSQL
- One-time queries executed normally
- Continuous queries planned and executed by the CqRuntime process
- Stream input: COPY, or submitted via TCP to CqIngress process
 - libevent-based, simple COPY-like protocol
- Stream output: cursors, active tables, CqEgress process
- Communication between processes done via shared memory queue infrastructure
 - Message passing done via SysV shmem and locks

- $\bullet\,$ New continuous query is defined \rightarrow shared runtime via shared memory
- Runtime plans the query, folds query into single shared query plan
 - Not a traditional plan tree; graph of operators

Shared Runtime Main Loop

- Check for control messages: add new CQ, remove CQ, ...
- Check for new stream tuples
 - Route each stream tuple through the operator graph (CPS)
 - Push output tuples to result consumers

- Continuous query evaluation done by a network of operators in the shared runtime
- If multiple queries reference the same operator, we can evaluate it only once
 - Better than linear scalability!
- Each operator keeps track of the queries it helps to implement

Sharing Predicates

- Simple cases: <, \leq , =, >, \geq , \neq
 - Construct a tree that divides domain of type into disjoint regions
 - For each tuple: walk the tree to find the region the tuple belongs in
 - Region implies which queries the tuple is still visible to
- Immutable functions can also be shared relatively easily

Sharing Predicates

- Simple cases: <, \leq , =, >, \geq , \neq
 - Construct a tree that divides domain of type into disjoint regions
 - For each tuple: walk the tree to find the region the tuple belongs in
 - Region implies which queries the tuple is still visible to
- Immutable functions can also be shared relatively easily

Sharing Joins, Aggregates

Can also be done

- Even between queries with varying windows and predicates
- Requires some thought (say, a PhD thesis or two)

• Given a new tuple, how do we route it through the graph of operators?

- (A 🖓

- Given a new tuple, how do we route it through the graph of operators?
- Traditional approach: statically choose an "optimal" route for each stream
 - Hard optimization problem
 - Need to re-optimize when new queries defined or system conditions change (e.g. operator selectivity)

- Given a new tuple, how do we route it through the graph of operators?
- Traditional approach: statically choose an "optimal" route for each stream
 - Hard optimization problem
 - Need to re-optimize when new queries defined or system conditions change (e.g. operator selectivity)
- TelegraphCQ approach: adaptive per-tuple routing
 - Push tuples one at a time through the operator graph; choose order of operators at runtime

- For each tuple, maintain lineage
 - "What operators has this tuple visited?"
 - "Which queries can still see this tuple?"
- Implication: can't push down projections
- Make routing decisions on the basis of simple run-time statistics

- Common scenario: peak stream rate >> average stream rate ("bursty")
- The system should cope gracefully

- Common scenario: peak stream rate >> average stream rate ("bursty")
- The system should cope gracefully
- Three alternatives:
 - Spool tuples to disk, process later
 - But stream rates often exceed disk throughput

- Common scenario: peak stream rate >> average stream rate ("bursty")
- The system should cope gracefully
- Three alternatives:
 - Spool tuples to disk, process later
 - But stream rates often exceed disk throughput
 - Orop excess tuples

- Common scenario: peak stream rate >> average stream rate ("bursty")
- The system should cope gracefully
- Three alternatives:
 - Spool tuples to disk, process later
 - But stream rates often exceed disk throughput
 - Orop excess tuples
 - Substitute statistical summaries for dropped stream tuples

- Common scenario: peak stream rate >> average stream rate ("bursty")
- The system should cope gracefully
- Three alternatives:
 - Spool tuples to disk, process later
 - But stream rates often exceed disk throughput
 - Orop excess tuples
 - Substitute statistical summaries for dropped stream tuples
- Quality of Service (QoS)

- 1 The Need For Data Stream Processing
- 2 Stream Query Languages
- 3 Query Processing Techniques For Streams
 - System Architecture
 - Shared Evaluation
 - Adaptive Tuple Routing
 - Overload Handling

4 Current Choices For A DSMS

- Open Source
- Proprietary

5 Demo

6 Q & A

Esper

DSMS engine written in Java (GPL). SQL-like stream query language.

• http://esper.codehaus.org

TelegraphCQ

Academic prototype from UC Berkeley, based on PostgreSQL 7.3

- PostgreSQL's SQL dialect, plus stream-oriented extensions
- BSD licensed; http://telegraph.cs.berkeley.edu

StreamCruncher

DSMS engine written in Java. Free for commercial use (not open source).

http://www.streamcruncher.com

StreamBase

A Stonebraker company. Founded in 2003.

-

- ∢ ∃ ▶

StreamBase

A Stonebraker company. Founded in 2003.

Other Startups

- Coral8
- Apama (purchased by Progress Software in 2005)
- and more ...

- < A

→ ∃ → -

StreamBase

A Stonebraker company. Founded in 2003.

Other Startups

- Coral8
- Apama (purchased by Progress Software in 2005)
- and more ...

Established Companies

TIBCO BusinessEvents, Oracle BAM

→ ∃ →

- Based on the experience gained from TelegraphCQ
 - New codebase
- Application components:
 - Continuous Query Engine
 - Modified version of PostgreSQL (currently 8.2.4+)
 - Integration Framework
 - Connectors, input/output converters, query management
 - Visualization
- Closed Series A funding in June 2006
- 1.0 release will be available Real Soon Now (currently RC3)
 - Lesson: PostgreSQL is a huge competitive advantage
- We're hiring :-)

- 1 The Need For Data Stream Processing
- 2 Stream Query Languages
- 3 Query Processing Techniques For Streams
 - System Architecture
 - Shared Evaluation
 - Adaptive Tuple Routing
 - Overload Handling

4 Current Choices For A DSMS

- Open Source
- Proprietary

Q & A

- 1 The Need For Data Stream Processing
- 2 Stream Query Languages
- 3 Query Processing Techniques For Streams
 - System Architecture
 - Shared Evaluation
 - Adaptive Tuple Routing
 - Overload Handling

4 Current Choices For A DSMS

- Open Source
- Proprietary

5 Demo

Thank You.

Any Questions?

э