TelegraphCQ:
A Data Stream Management System

Neil Conway (nei | c@anur ai . com

| ntroduction

- N

What Is data stream management?
A query language for streams

o TelegraphCQ architecture

Query execution

o |

TelegraphCQ: — p. 2

Data Streams
L -

Most traditional database systems are optimized for
one-time queries on mostly-static data

» Long-lived data, short-lived queries

This is a poor fit for applications that want to manipulate
real-time unbounded streams of data
» Long-lived queries, short-lived data

Examples: real-time analysis of financial data (stock

trades, fraud detection), sensor network data, network
traffic analysis (clickstreams, intrusion-detection), ...

o |

TelegraphCQ: —p. 3

Data Stream M anagement
- -

Possible solution: insert incoming data into a DBMS,
perform analysis, and then periodically trim/archive the

data
» Inefficient: unnecessarily hits disk, and recomputes
the analysis from scratch each time

» Better would be to incrementally update the result
set of a continuous query to reflect latest stream

tuples
Popular alternative: “roll your own” from scratch
s Labour intensive

Goal: simplify streaming applications by building a
generic data stream management system (DSMS)

o |

TelegraphCQ: —p. 4

TelegraphCQ
-

There has been considerable interest in streams among
academia

One such project is TelegraphCQ from UC Berkeley
s Open-source DSMS prototype, based on the
PostgreSQL database system

Several other academic streaming projects: STREAM
(Stanford), Aurora (MIT), Nile (Purdue), Medusa
(Brown), ...

Several TelegraphCQ folks have started Amalgamated
Insight Inc.

There are several other stream-related startups, notably
StreamBase (Stonebraker)

TelegraphCQ: —p. 5

What Isa stream?

A stream is an infinite bag of (timestamp, tuple) pairs

Stream tuples can be externally timestamped, or
timestamped by the system

A DSMS manages both streams and (typically)
conventional database objects

“Push” stream. stream content is supplied by client
applications that send it directly to the DSMS
» For example, by connecting via TCP

In “pull” streams, the DSMS fetches content from a
remote source and converts it into a stream of tuples

A derived stream Is a stream defined by a query on
other database objects

|

TelegraphCQ: —p. 6

Querieson streams

- N

A DBMS typically handles ad hoc, one-time queries
» Client submits query, DBMS evaluates it and returns
result set
In streaming applications, we are more interested in
continuous queries
s Long-running (months or years not uncommon)
» Continuous: result set changes over time

» Typically represents a condition of interest (“do x
when condition y or z is satisfied”), or a running
statistical summary of a stream (“show me the &
most active stock symbols in the last ¢ minutes,
computed every n seconds”)

o |

TelegraphCQ: —p. 7

Query Language
A declarative query language is a Good Thing T

STREAM and TelegraphCQ implement variants of CQL,
the Continuous Query Language

CQL is a straightforward extension to SQL for
manipulating streams

Doesn’t specify some important technical details

Currently under development: standardized streaming
guery language, “StreamSQL”

|

TelegraphCQ: —p. 8

°

CQL Basics
-

Pragmatism: we have a perfectly good relational query
language, so reuse that

s Query optimization and execution for traditional
relational query languages is also very well
understood

Two basic kinds of things: streams and relations
SQL defines relation — relation operators

CQL defines operators for stream — relation and
relation — stream

|

TelegraphCQ: —p. 9

o

Stream — Relation

-

Streams are unbounded. To deal with a finite portion of
the stream, we apply a window clause to it to produce a
time-varying relation

Time-based window: the tuples that appear in a
specified time interval in the stream

RANGE '5 m nutes’ SLIDE ’ 30 seconds’
Tuple-based window: most recent n tuples in the stream
ROANS 10 SLIDE ' 60 seconds’

Partitioned window: given a set of attributes, groups
stream tuples on those attributes, then computes the
union of a window clause applied to all the groups

PARTI TI ON BY st ock. synmbol ROA5 5

|

TelegraphCQ: — p. 10

-

3 types of R — S operators:
1.

Relation — Stream
-

The IStream of R contains a tuple s at time ¢t when s Is
N Ry — Ry

. The DStream of R contains a tuple s at time ¢t when s IS

N Ri—1— Ry

. The RStream of R contains a tuple s at time ¢ when s is

N Ry

|

TelegraphCQ: — p. 11

Joins

- N

Stream-relation joins are common In practice
» For each new stream tuple, do a table (index) lookup
s 1 stream, n relations
s Divides plan into streaming and non-streaming
components
#® Stream-stream joins can be useful
» Probably requires compatible window clauses

o |

TelegraphCQ: — p. 12

CQL Example
f.ﬂ (Source: Stanford CQL Query Repository) T

Network traffic analysis: “Every 5 minutes, sum the
number of bytes and number of packets devoted to
HTTP traffic for each distinct IP address.”

SELECT RSTREAM src_ip, SUM I en), COUNT(*))

FROM packets [RANGE '5 M nutes’
SLIDE "5 M nute’]
VWHERE dest port = '80°

GROUP BY src_ip

o |

TelegraphCQ: — p. 13

CQL Example 2

- N

Online auction fraud detection: “Every 90 seconds,
compute the highest bid made in the last 10 minutes.”

SELECT RSTREAMitem.id, bid price)
FROM bid [RANGE ' 10 M nut es’
SLIDE " 90 Seconds’]
VWHERE bid price =
(SELECT MAX(bid price)
FROM bid [RANGE ' 10 M nutes’]
SLIDE " 90 Seconds’])

o |

TelegraphCQ: — p. 14

TelegraphCQ
-

Adaptivity : continuous gueries might run for months.
Static planning decisions will become invalid

» Therefore, don’t use a static query plan
Sharing: many typical systems will execute hundreds of

continuous queries at a time. Sharing the work required
to evaluate these queries is necessary

s Happily, long-running continuous queries are easier
to share

» Concurrency is also simplified with streams

Need to allow continuous gueries to be easily added
and removed from a running system

Try to avoid hitting disk

|

TelegraphCQ: — p. 15

TelegraphCQ Architecture

- N

Context: PostgreSQL uses a fairly traditional Unix
daemon architecture

» A single persistent parent process, the postmaster

» The postmaster forks a new child process called a
backend to handle each new client connection

» A SysV IPC shared memory region is used to
communicate between backends
s It contains various caches, notably the shared
buffer pool

» Some additional server processes. autovacuum
daemon, background writer, checkpoint process

o |

TelegraphCQ: — p. 16

Process Architecture

-

New TelegraphCQ processes:

» Wrapper Clearing House: manages stream |/O
(push/pull) and format conversion

s TCQ Backend: single process that executes all the
streaming queries as part of a single query plan

Communication between processes via shared memory
gueues

Client connects to normal Postgres backend,;
continuous queries are planned by the backend, then
sent via shared memory to the TCQ backend

Results returned via another shared memory gueue

|

TelegraphCQ: — p. 17

Global Query Plan
B -

TCQ backend is responsible for evaluating all the
continuous queries in the system

Construct a single query plan containing all the
operators in all the queries

s Continuous gueries from a Postgres backend folded
Into the shared query plan

s Commonalities between queries can be exploited by
using a single shared operator to implement parts of
more than one query

Determining how to walk the graph of operators for a
given stream input tuple is called tuple routing

o |

TelegraphCQ: — p. 18

Tuple Routing
-

The optimal path might change over time: operator
cost, operator selectivity, stream arrival rates, .. .are all
variable

Therefore, don’'t do any static planning: instead,
per-tuple adaptive routing

A stream tuple includes “routing metadata”, describing
the operators it has visited, the queries it is still visible
to, and its signature (underlying base tuples)

» We don’t materialize join tuples, for more routing
flexibility

Once a tuple fails a predicate for a query, mark it as
invisible to that query (but continue routing tuple!)

|

TelegraphCQ: — p. 19

Tuple Routing, cont.

- N

Split joins into two halves (STeM): “build” and “probe”

Decide which operator to send a tuple to next based on
runtime statistics about operator costs / selectivies, plus
the tuple routing metadata

Current implementation is not parallel, but the design
should parallelize well

o |

TelegraphCQ: — p. 20

Shared Evaluation
-

This architecture naturally leads to implementing parts
of multiple queries with a single operator

Sharing predicates is fairly easy for <, <, >, > = #
Joins can be shared by splitting them into StEMs

Aggregates can be shared pretty effectively

s Even aggregates with different predicates and
window clauses can be shared

» Two-phase aggregation

|

TelegraphCQ: — p. 21

| nteresting Streaming Problems
- -

o Graceful degredation under load

s The rate of arrival of a given stream is often highly
variable

s Sometimes necessary to provision hardware for
average load, not peak load

s How to degrade gracefully?

» Options: spill excess tuples to disk, summarize
excess tuples (e.g. via histograms), or discard them

High-availability and clustering

o |

TelegraphCQ: — p. 22

More Problems

- N

“Hybrid” queries (stream-table joins)
» How does this change guery optimization/execution,
especially in the non-streaming portion of the query?
» How do we avoid the downsides of static planning?

s Sharing?

® Streams and transactions
o When do rows in base tables become visible?
» Transaction-like semantics for streaming queries?

Historical queries, archived streams

o |

TelegraphCQ: — p. 23

	Introduction
	Data Streams
	Data Stream Management
	TelegraphCQ
	What is a stream?
	Queries on streams
	Query Language
	CQL Basics
	Stream $	o $ Relation
	Relation $	o $ Stream
	Joins
	CQL Example
	CQL Example 2
	TelegraphCQ
	TelegraphCQ Architecture
	Process Architecture
	Global Query Plan
	Tuple Routing
	Tuple Routing, cont.
	Shared Evaluation
	Interesting Streaming Problems
	More Problems

