
TelegraphCQ:
A Data Stream Management System

Neil Conway (neilc@samurai.com)

TelegraphCQ: – p. 1



Introduction

What is data stream management?

A query language for streams

TelegraphCQ architecture

Query execution

TelegraphCQ: – p. 2



Data Streams

Most traditional database systems are optimized for
one-time queries on mostly-static data

Long-lived data, short-lived queries

This is a poor fit for applications that want to manipulate
real-time unbounded streams of data

Long-lived queries, short-lived data

Examples: real-time analysis of financial data (stock
trades, fraud detection), sensor network data, network
traffic analysis (clickstreams, intrusion-detection), . . .

TelegraphCQ: – p. 3



Data Stream Management

Possible solution: insert incoming data into a DBMS,
perform analysis, and then periodically trim/archive the
data

Inefficient: unnecessarily hits disk, and recomputes
the analysis from scratch each time
Better would be to incrementally update the result
set of a continuous query to reflect latest stream
tuples

Popular alternative: “roll your own” from scratch
Labour intensive

Goal: simplify streaming applications by building a
generic data stream management system (DSMS)

TelegraphCQ: – p. 4



TelegraphCQ

There has been considerable interest in streams among
academia

One such project is TelegraphCQ from UC Berkeley
Open-source DSMS prototype, based on the
PostgreSQL database system

Several other academic streaming projects: STREAM
(Stanford), Aurora (MIT), Nile (Purdue), Medusa
(Brown), . . .

Several TelegraphCQ folks have started Amalgamated
Insight Inc.

There are several other stream-related startups, notably
StreamBase (Stonebraker)

TelegraphCQ: – p. 5



What is a stream?

A stream is an infinite bag of 〈timestamp, tuple〉 pairs

Stream tuples can be externally timestamped, or
timestamped by the system

A DSMS manages both streams and (typically)
conventional database objects

“Push” stream: stream content is supplied by client
applications that send it directly to the DSMS

For example, by connecting via TCP

In “pull” streams, the DSMS fetches content from a
remote source and converts it into a stream of tuples

A derived stream is a stream defined by a query on
other database objects

TelegraphCQ: – p. 6



Queries on streams

A DBMS typically handles ad hoc, one-time queries
Client submits query, DBMS evaluates it and returns
result set

In streaming applications, we are more interested in
continuous queries

Long-running (months or years not uncommon)
Continuous: result set changes over time
Typically represents a condition of interest (“do x

when condition y or z is satisfied”), or a running
statistical summary of a stream (“show me the k

most active stock symbols in the last t minutes,
computed every n seconds”)

TelegraphCQ: – p. 7



Query Language

A declarative query language is a Good Thing

STREAM and TelegraphCQ implement variants of CQL,
the Continuous Query Language

CQL is a straightforward extension to SQL for
manipulating streams

Doesn’t specify some important technical details

Currently under development: standardized streaming
query language, “StreamSQL”

TelegraphCQ: – p. 8



CQL Basics

Pragmatism: we have a perfectly good relational query
language, so reuse that

Query optimization and execution for traditional
relational query languages is also very well
understood

Two basic kinds of things: streams and relations

SQL defines relation → relation operators

CQL defines operators for stream → relation and
relation → stream

TelegraphCQ: – p. 9



Stream → Relation

Streams are unbounded. To deal with a finite portion of
the stream, we apply a window clause to it to produce a
time-varying relation

Time-based window: the tuples that appear in a
specified time interval in the stream

RANGE ’5 minutes’ SLIDE ’30 seconds’

Tuple-based window: most recent n tuples in the stream

ROWS 10 SLIDE ’60 seconds’

Partitioned window: given a set of attributes, groups
stream tuples on those attributes, then computes the
union of a window clause applied to all the groups

PARTITION BY stock.symbol ROWS 5

TelegraphCQ: – p. 10



Relation → Stream

3 types of R → S operators:

1. The IStream of R contains a tuple s at time t when s is
in Rt − Rt−1

2. The DStream of R contains a tuple s at time t when s is
in Rt−1 − Rt

3. The RStream of R contains a tuple s at time t when s is
in Rt

TelegraphCQ: – p. 11



Joins

Stream-relation joins are common in practice
For each new stream tuple, do a table (index) lookup
1 stream, n relations
Divides plan into streaming and non-streaming
components

Stream-stream joins can be useful
Probably requires compatible window clauses

TelegraphCQ: – p. 12



CQL Example

(Source: Stanford CQL Query Repository)

Network traffic analysis: “Every 5 minutes, sum the
number of bytes and number of packets devoted to
HTTP traffic for each distinct IP address.”

SELECT RSTREAM(src_ip, SUM(len), COUNT(*))

FROM packets [RANGE ’5 Minutes’

SLIDE ’5 Minute’]

WHERE dest_port = ’80’

GROUP BY src_ip

TelegraphCQ: – p. 13



CQL Example 2

Online auction fraud detection: “Every 90 seconds,
compute the highest bid made in the last 10 minutes.”

SELECT RSTREAM(item_id, bid_price)

FROM bid [RANGE ’10 Minutes’

SLIDE ’90 Seconds’]

WHERE bid_price =

(SELECT MAX(bid_price)

FROM bid [RANGE ’10 Minutes’]

SLIDE ’90 Seconds’])

TelegraphCQ: – p. 14



TelegraphCQ

Adaptivity : continuous queries might run for months.
Static planning decisions will become invalid

Therefore, don’t use a static query plan

Sharing: many typical systems will execute hundreds of
continuous queries at a time. Sharing the work required
to evaluate these queries is necessary

Happily, long-running continuous queries are easier
to share
Concurrency is also simplified with streams

Need to allow continuous queries to be easily added
and removed from a running system

Try to avoid hitting disk

TelegraphCQ: – p. 15



TelegraphCQ Architecture

Context: PostgreSQL uses a fairly traditional Unix
daemon architecture

A single persistent parent process, the postmaster
The postmaster forks a new child process called a
backend to handle each new client connection
A SysV IPC shared memory region is used to
communicate between backends

It contains various caches, notably the shared
buffer pool

Some additional server processes: autovacuum
daemon, background writer, checkpoint process

TelegraphCQ: – p. 16



Process Architecture

New TelegraphCQ processes:
Wrapper Clearing House: manages stream I/O
(push/pull) and format conversion
TCQ Backend: single process that executes all the
streaming queries as part of a single query plan

Communication between processes via shared memory
queues

Client connects to normal Postgres backend;
continuous queries are planned by the backend, then
sent via shared memory to the TCQ backend

Results returned via another shared memory queue

TelegraphCQ: – p. 17



Global Query Plan

TCQ backend is responsible for evaluating all the
continuous queries in the system

Construct a single query plan containing all the
operators in all the queries

Continuous queries from a Postgres backend folded
into the shared query plan
Commonalities between queries can be exploited by
using a single shared operator to implement parts of
more than one query

Determining how to walk the graph of operators for a
given stream input tuple is called tuple routing

TelegraphCQ: – p. 18



Tuple Routing

The optimal path might change over time: operator
cost, operator selectivity, stream arrival rates, . . . are all
variable

Therefore, don’t do any static planning: instead,
per-tuple adaptive routing

A stream tuple includes “routing metadata”, describing
the operators it has visited, the queries it is still visible
to, and its signature (underlying base tuples)

We don’t materialize join tuples, for more routing
flexibility

Once a tuple fails a predicate for a query, mark it as
invisible to that query (but continue routing tuple!)

TelegraphCQ: – p. 19



Tuple Routing, cont.

Split joins into two halves (STeM): “build” and “probe”

Decide which operator to send a tuple to next based on
runtime statistics about operator costs / selectivies, plus
the tuple routing metadata

Current implementation is not parallel, but the design
should parallelize well

TelegraphCQ: – p. 20



Shared Evaluation

This architecture naturally leads to implementing parts
of multiple queries with a single operator

Sharing predicates is fairly easy for ≤, <,>,≥, =, 6=

Joins can be shared by splitting them into StEMs

Aggregates can be shared pretty effectively
Even aggregates with different predicates and
window clauses can be shared
Two-phase aggregation

TelegraphCQ: – p. 21



Interesting Streaming Problems

Graceful degredation under load
The rate of arrival of a given stream is often highly
variable
Sometimes necessary to provision hardware for
average load, not peak load
How to degrade gracefully?
Options: spill excess tuples to disk, summarize
excess tuples (e.g. via histograms), or discard them

High-availability and clustering

TelegraphCQ: – p. 22



More Problems

“Hybrid” queries (stream-table joins)
How does this change query optimization/execution,
especially in the non-streaming portion of the query?
How do we avoid the downsides of static planning?
Sharing?

Streams and transactions
When do rows in base tables become visible?
Transaction-like semantics for streaming queries?

Historical queries, archived streams

TelegraphCQ: – p. 23


	Introduction
	Data Streams
	Data Stream Management
	TelegraphCQ
	What is a stream?
	Queries on streams
	Query Language
	CQL Basics
	Stream $	o $ Relation
	Relation $	o $ Stream
	Joins
	CQL Example
	CQL Example 2
	TelegraphCQ
	TelegraphCQ Architecture
	Process Architecture
	Global Query Plan
	Tuple Routing
	Tuple Routing, cont.
	Shared Evaluation
	Interesting Streaming Problems
	More Problems

