
Consistency Without Borders

Peter Alvaro, Peter Bailis, Neil Conway, Joseph M. Hellerstein

Abstract

Distributed consistency is a perennial research topic; in
recent years it has become an urgent practical matter as
well. The research literature has focused on enforcing
various flavors of consistency at the I/O layer, such as
linearizability of read/write registers. For practitioners,
strong I/O consistency is often impractical at scale, while
looser forms of I/O consistency are difficult to map to
application-level concerns. Instead, it is common for de-
velopers to take matters of distributed consistency into
their own hands, leading to application-specific solutions
that are tricky to write, test and maintain.

In this paper, we agitate for the technical community
to shift its attention to approaches that lie between the
extremes of I/O-level and application-level consistency.
We ground our discussion in early work in the area, in-
cluding our own experiences building programmer tools
and languages that help developers guarantee distributed
consistency at the application level. Much remains to be
done, and we highlight some of the challenges that we
feel deserve more attention.

1 Introduction

Cloud computing infrastructure and mobile devices have
become widespread in a relatively short period of time.
For many programmers, this means that distributed sys-
tems have quickly become their primary model of com-
putation [14]. A growing proportion of developers must
address the challenges of distribution, ensuring correct ap-
plication behavior despite asynchrony, concurrency, and
partial failure. Over the past several decades, developers

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copy-
rights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from permis-
sions@acm.org.

SoCC’13, October 1–3 2013, Santa Clara, CA, USA.
Copyright 2013 ACM 978-1-4503-2428-1/13/10. . . $15.00.
http://dx.doi.org/10.1145/2523616.2523632

of distributed systems have traditionally relied on I/O-
level techniques [7, 10, 25, 27, 34, 44, 45, 57] such as se-
rializable transactions [12], linearizable data stores [40],
and atomic broadcast [29] to ensure correct behavior.
These techniques encapsulate much of the complexity
of distributed programming in the storage or messaging
layers, simplifying application development.

Despite the historical success of these low-level ap-
proaches, there is mounting evidence that an I/O-level
approach to consistency guarantees becomes increasingly
problematic as systems grow to global scale. Strong con-
sistency protocols require coordination, which has sig-
nificant latency and availability costs, and can lead to
unpredictable behavior under load [14]. Perhaps most
importantly, I/O-level interfaces divorce operations from
their applications’ semantic context: while programmers
reason in terms of application-level correctness proper-
ties, storage systems provide guarantees about low-level
operations such as reads and writes to opaque registers.
This forces developers to manually translate between
application-level concepts and low-level storage and mes-
saging operations, a task that is error-prone and requires
extensive knowledge of the underlying system. In turn,
the storage or messaging infrastructure cannot leverage
application semantics [8, 27, 42], leading to conserva-
tive protocols with needlessly high latency and reduced
availability. As a result, many practitioners choose to
avoid I/O-level consistency mechanisms whenever possi-
ble [14, 18, 59], instead relying on informal application-
level design patterns to achieve correct behavior [36, 37].
These patterns are insightful, but challenging to correctly
implement, test and maintain in each particular applica-
tion scenario.

The bulk of the research on consistency has focused
on the subtleties of various consistency techniques—both
strong and relaxed—at the I/O layer. That work does
little to alleviate the application developer’s end-to-end
consistency conundrum: whether to delegate to a strongly
consistent I/O infrastructure, or to shoulder the software
engineering burden of designing, testing and maintaining
application-specific consistency code.

We believe it is imperative for the technical commu-
nity to re-frame this discussion by offering consistency
solutions that inhabit the design space in between these
two extremes. We envision a range of consistency tech-
niques across the stack—including at the object, dataflow

http://dx.doi.org/10.1145/2523616.2523632

and language levels—with various tradeoffs between ef-
ficiency, generality, and engineering complexity.

In this paper, we motivate the further (and, in some
cases, renewed) study of these alternative approaches
to distributed consistency. We offer an informal taxon-
omy of strategies and associated insights both from our
own work as well as recent developments from other
researchers. We identify opportunities for further explo-
ration and highlight several areas in which non-I/O-level
mechanisms have already begun to succeed in the wild.
As a community, we have an opportunity to demonstrate
that correctness at scale is not in conflict with availability,
performance, and programmer productivity.

2 Case Study
To illustrate how consistent outcomes can be achieved at
several different places in the software stack, consider a
scenario in which several programs manipulate a directed
graph. This system can be divided into (at least) two
tiers: the storage tier (e.g., a DBMS or key-value store)
manages the persistence of the graph data structure, while
the application tier accesses the graph by submitting read
and write operations against the graph store. To improve
fault tolerance and scalability, we assume the graph is
replicated and partitioned.

We consider two applications that use this graph store:

1. The deadlock detector queries a “waits-for” graph
that records dependencies between processes. The
task is to check whether the graph contains a cycle,
which indicates a deadlock [21].

2. The garbage collector uses a “refers-to” graph to
record references between a collection of distributed
objects. The objective is to detect strongly connected
components that are not reachable from a distin-
guished “root” object; such components can safely
be reclaimed [1].

Both programs have similar correctness requirements.
For the deadlock detector, all deadlocks should eventu-
ally be reported, with no false positives. Similarly, the
garbage collector should ensure that all unreachable com-
ponents are eventually discovered, and no “live” objects
are returned as suitable for garbage collection.

How should we map these application-level semantics
down to the low-level storage abstraction? In the remain-
der of the paper, we will consider these semantics at the
traditional extremes (Section 3), and via convergent ob-
jects (Section 4), distributed dataflows (Section 5), and
whole program analysis (Section 6).

Before we do so, we note that neither example appli-
cation requires a strong consistency guarantee such as
linearizability or serializability to maintain correctness.

Both deadlock and unreferenced memory are stable prop-
erties [20]: once such a property holds, it will persist
(until a corrective action is taken, such as aborting one of
the participants in a deadlock). However, deadlock is also
a strong stable property [52]: it can be detected given a
subset of the global graph. This implies that the deadlock
detector only requires very weak semantic guarantees
from the graph store: as long as all waits-for edges are
eventually observed (regardless of order), all deadlocked
transactions will be detected. In contrast, the garbage
collector requires global knowledge: just because one
partition of the graph store contains no references to an
object does not imply there are no references globally.
Hence, garbage collection requires stronger consistency
guarantees than deadlock detection. However, neither re-
quires “strong” consistency—and its concomitant costs in
decreased availability and increased latency—to achieve
correct behavior.

3 Consistency at the Extremes

To guarantee that application-level invariants are never vi-
olated, programmers are often forced to choose between
one of two “extreme” strategies: generic I/O-level inter-
faces that control the order of events such as messages or
reads and writes, and custom, typically ad hoc solutions
that force application logic to assume all responsibility
for ensuring that correctness invariants are preserved.
Both approaches have significant limitations.

3.1 I/O-Level Consistency

Database systems have long provided guarantees about
the interleaving of “conflicting” operations on shared
state [13]. These guarantees are defined in terms of
storage operations like reads and writes: for example,
conflict serializability defines a conflict as two opera-
tions on the same data item submitted by different trans-
actions, in which at least one of the operations is a
write [50]. Although originally defined for centralized
systems, these consistency models have subsequently
been applied to distributed data management [12]. A
wide variety of consistency models have been proposed
that make different tradeoffs between latency, availabil-
ity, and the space of permissible operation interleavings
(e.g., [7, 25, 44, 45, 57]). Similarly, distributed systems
often rely on ordering guarantees on messages that ref-
erence shared state. Techniques such as state machine
replication [53] ensure consistency among replicas of
a distributed service by guaranteeing that messages are
delivered in the same order to all replicas. Group com-
munication systems [15] provide a variety of ordering
guarantees for broadcast messages.

Encapsulating consistency in an I/O-level abstrac-
tion allows for a clean separation between application
logic and low-level storage/messaging concerns. How-
ever, there are two major problems with this approach.
First, applications typically interact with such infrastruc-
ture using a narrow API based on read and write opera-
tions or uninterpreted messages. While this encourages
loose coupling, it means that application-level semantic
knowledge is lost and hence the underlying system must
make conservative assumptions (e.g., that two writes to
the same object, or two messages to the same agent, can-
not be safely reordered). These conservative assumptions
lead to inefficiency: for example, recent designs for scal-
able serializable data stores offer per-object throughput
limited to 10’s to 100’s of updates per second [26, 56].
Second, developers who wish to relax I/O-level consis-
tency guarantees must translate application-level invari-
ants to properties of execution traces. This is difficult to
do and often requires expert knowledge of both the partic-
ular storage/messaging systems in use, and the subtleties
of the application requirements.

Returning to the case studies introduced in Section 2,
we see that I/O-level consistency mechanisms are unsatis-
factory. The graph store has no knowledge of application
semantics, so any correctness guarantees must be speci-
fied in terms of read/write traces: for example, the store
might promise that all reads and writes will be executed in
a linearizable manner [40]. While such a strong ordering
guarantee will ensure consistent outcomes, applications
like those presented in the case study will “overpay” in
performance and availability penalties for stronger guar-
antees than they require. In fact, as we observed in Sec-
tion 2, deadlock detection places no restrictions on the
order in which new waits-for edges are recorded, while
garbage collection requires only the coarse-grained con-
straint that the entire reachability relation is computed
before concluding that an object is unreferenced.

3.2 Application-Level Consistency

A perennial alternative to storage-level consistency is to
delegate responsibility for maintaining correctness invari-
ants to application logic. With richer semantic knowl-
edge it is often possible to avoid the costs of conservative
global coordination in favor of custom, application-level
solutions [23, 28, 36, 37]. For example, the deadlock
detector could be implemented in a pipelined fashion,
emitting strongly connected graph components as soon
as they are discovered, while the garbage collector could
be implemented in terms of mark and sweep phases that
are strictly synchronized.

Unfortunately, such ad hoc solutions push complexity
to application developers: programmers must ensure cor-
rect behavior for any possible event schedule, rather than,

say, only serializable schedules. Moreover, application-
level consistency makes code reuse difficult, forcing pro-
grammers to design, implement, and validate consistency
mechanisms from scratch for each new module. Intu-
itively, the two case study programs are quite similar—
both check properties of the transitive closure of a graph—
but in practice, application-level consistency mechanisms
from one program would not be reusable for the other.

4 Object-Level Consistency

The two approaches described in Section 3—I/O guaran-
tees and custom application logic—represent the status
quo in ensuring consistent program outcomes. Enforcing
consistency at the extremes leads to solutions that are
either ill-fitted or over-fitted to the applications whose
invariants they protect. As a result, programmers must
sacrifice either efficiency or generality/reusability. In the
remainder of this paper, we advocate an aggressive ex-
ploration of intermediate solutions between these two
extremes. We begin closest to the storage layer, studying
proposals for how opaque storage APIs can be enriched
with semantic knowledge in a “piecemeal” fashion; sub-
sequent sections move closer to the application layer.

Systems that provide guarantees about uninterpreted
read-write traces are forced to make conservative assump-
tions about application semantics. To address this, several
researchers have explored concurrency control techniques
for objects or abstract data types [33, 39, 47, 51, 54, 60].
Recently, Conflict-Free Replicated Data Types (CRDTs)
have been proposed as a way to encode a common class
of useful semantic properties: data values that change
in an associative, commutative, and idempotent fashion,
which guarantees that replicas of such values will eventu-
ally converge [55]. Encoding additional semantic knowl-
edge is clearly useful: the significant latency, throughput,
and availability improvements delivered by these efforts
supports our thesis that opaque I/O-level consistency is
not a complete solution. The object-based approach also
addresses some of our concerns about the poor reusabil-
ity of application-level consistency, since common data
types like counters, lists, and graphs can be implemented
once and then shared by multiple applications. Returning
to the case study, we could use a Set CRDT to encode
the adjacency list of each vertex in the graph—this would
allow concurrent writes to the adjacency list to be safely
reordered at a substantially lower cost than, say, using a
linearizable test-and-set operation to update each adja-
cency list.

In general, such strategies offer only limited guaran-
tees for developers. While object-level approaches can
encode semantic knowledge about individual objects or
values, system-wide semantics about the composition of

objects cannot be represented. Object-level consistency
often focuses on achieving storage-level properties like
replica convergence [55], leaving the developer responsi-
ble for mapping from high-level application properties to
invariants over individual objects. For example, a guaran-
tee that all replicas will converge to the same graph state
is not strong enough to ensure that the garbage collec-
tion application presented in Section 2—which requires
global knowledge of the refers-to graph—is correctly
synchronized. While it might be possible to represent
the entire application as a monolithic convergent object,
this approach leads to complex objects that are difficult
to reason about and reuse. In the limit, this requires an
entire application to be a single convergent object: this
reduces to the previously discussed extreme approach of
application-specific consistency logic (Section 3.2).

A similar line of research in the database community
has explored using semantic knowledge to improve con-
currency control and query processing (e.g., [8, 10, 11,
30, 32, 42, 49]). Like the above work on object-level con-
sistency, these proposals pursue an incremental approach
in which semantic knowledge must be added to individ-
ual storage APIs and manually annotated by application
developers. In general, these techniques complicate the
interface between applications and storage systems and
do not provide mechanisms to allow individual semantic
properties to be composed to achieve application-level
correctness invariants. Semantics-based concurrency con-
trol has seen little adoption in practice.

In short, object-level approaches present a middle
ground suitable for programmers who are willing and
able to reason about distributed consistency at a more
application-specific level than is possible with I/O-level
consistency. When applicable, convergent distributed ob-
jects allow programmers to focus their attention on cross-
object consistency concerns. Outside of academia this
approach has garnered some interest in certain NoSQL
developer communities in recent years [19].

5 Flow-Level Consistency

For those who wish to raise the abstraction above single
object consistency, a natural next step is to consider the
semantics associated with data as it transits through appli-
cation modules, across process boundaries, and between
services. For example, a request for a user’s timeline on
a social network interacts with multiple services that ag-
gregate related data, transform that data, and eventually
render a response. To achieve correct behavior, appli-
cation developers need to reason about the correctness
properties that hold over the output of this cross-object,
cross-service dataflow.

Reasoning about the consistency properties of applica-

tions composed from a variety of services requires rea-
soning both about the semantic properties of components
and how these properties are preserved across composi-
tions with other components. Hence it requires a model
that captures both component semantics and the depen-
dencies between interacting components. One approach
is to view the distributed system as an asynchronous
dataflow, in which streams of inputs pass through a graph
of components that filter, transform, and combine them
into streams of outputs. Component properties can be
captured with a language of annotations that allow pro-
grammers to assert semantic properties; given annotations
for individual components, determining whole-stack se-
mantic properties for the entire dataflow graph becomes
an inference problem.

Order insensitivity is a particularly important seman-
tic property. Certain components are insensitive to mes-
sage delivery order—they produce a unique output set
for all orderings and batchings of their inputs. We call
such components confluent [48]. For example, the dead-
lock detector presented in Section 2 is confluent and can
safely process waits-for edges as soon as they become
available. It is instructive to compare confluence with
the goal of CRDT-level replica convergence (Section 4).
Convergence applies to individual objects, while con-
fluence is a property of dataflow components, and—by
composition—of larger dataflow graphs. Compositions
of confluent components simplify reasoning about higher-
level application-level correctness properties, allowing
developers to ignore asynchronous network behavior and
concurrency across potentially complex services.

Dataflow consistency is not a well-studied topic. Our
own ideas are fairly recent, embodied in a tool called
BLAZES that helps programmers assess and enforce flow-
level consistency properties like order insensitivity [3].
Based on component annotations provided by the pro-
grammer, Blazes determines if consistent outcomes are
guaranteed without any coordination. When components
are not confluent, Blazes synthesizes additional synchro-
nization logic to ensure unique outputs. When possible, it
exploits application-specific strategies based on data seal-
ing to avoid the latency and availability costs of global
coordination. For example, the garbage collector is not
confluent: it can incorrectly conclude that memory is
unreferenced if it observes only a subset of the global
graph. However, in order to make progress, it does not
require a total order over the refers-to records, but instead
requires only an indication that the graph (or a particular
partition of the graph) is complete (“sealed”), which can
be achieved via producer-consumer punctuations [58] in
the dataflow.

Given the case study applications, a developer would
annotate the graph store and deadlock detection compo-
nents as confluent. Blazes recognizes that the compo-

sition of a confluent replicated graph store and a con-
fluent deadlock detector yields a confluent composite
dataflow, and allows the system to execute without syn-
chronization. The garbage collection component would
be annotated as non-confluent but—as is common prac-
tice [41]—partitioned into generations or “epochs.” If
the dataflow is enhanced to produce sealing punctuations
that indicate when individual allocators will produce no
more edges within a given epoch, Blazes can synthesize a
simple, barrier-based coordination strategy that prevents
the garbage collector from executing until the graph par-
tition is sealed—that is, the mark phase has ended for a
given epoch. This strategy is much less expensive than a
general coordination protocol: rather than waiting for co-
ordination on every message, only a single coordination
round is required per epoch.

The principal drawback of the dataflow approach is
the need for manual component annotations: annotat-
ing modules can be burdensome and error-prone, espe-
cially for complex components. Incorrect annotations
corrupt the analysis and can result in unsafe optimiza-
tions. For reusable modules (like the CRDTs discussed
in Section 4), it may be possible to have an expert supply
annotations. This amortizes the cost of annotation and
reduces the risk of errors, but is only applicable for com-
monly used components. This drawback aside, flow-level
approaches to consistency occupy an interesting middle
ground: they are more broadly applicable than language-
or application-level approaches, and more powerful than
object-level approaches, which cannot capture composi-
tion across services.

6 Language-Level Consistency

Flow-level consistency only requires an abstract dataflow
graph depicting the system architecture, and hence can
be used with existing programs and off-the-shelf stream
processors such as Storm [43]. However, it also requires
that users manually add semantic annotations, which is
burdensome and error-prone. These concerns are exac-
erbated as the complexity of the system increases. In
this section, we consider a more radical approach: if the
entire system is written in a high-level language that di-
rectly encodes both dependencies and appropriate seman-
tic properties, the compiler can automatically analyze the
consistency properties of entire applications.

6.1 Dependency Analysis

Database systems are a prominent example of the power
of automatic dependency analysis. Because all data has a
uniform representation (relations) and declarative rules
are used to compute derived data (e.g., views), the sys-

tem can easily observe how base data is used to compute
derived data. This allows powerful capabilities like au-
tomatic materialized view maintenance [35], constraint
inference [17, 46], and provenance analysis [22].

To enable similarly powerful lineage analysis for large-
scale distributed systems, several technical challenges
must be addressed. First, we need a uniform representa-
tion for all system state, including process-local knowl-
edge, system events like timers and interrupts, and net-
work messages. Second, we need a notion of dependen-
cies that accounts for both synchronous, process-local de-
pendencies (local computation) and asynchronous, cross-
process dependencies (communication). We call the com-
bination of these ideas data-centric programming [2]: all
system state is represented in a uniform manner (as re-
lations), which enables the system logic to be written as
declarative queries over that state. An extended language
that admits asynchronous queries can capture communi-
cation within the same declarative framework [5]. The
most recent data-centric language designed by our group
is called Bloom [4, 16].

6.2 Semantics

Dependency analysis reveals how inputs, outputs, and
intermediate state are related; in addition, we need knowl-
edge of semantics—that is, how these data values change
over time and which invariants are preserved. Semantic
properties and coordination requirements are closely re-
lated: if a program’s semantics allow a situation in which
a correctness invariant might be violated, then we might
use a coordination protocol to prevent such a scenario
from arising.

An important semantic property is monotonicity: in-
tuitively, a monotonic operator is one that processes its
inputs in an order-insensitive manner and never retracts
a previous output in the face of new information. Typi-
cal examples of monotonic operators include set union,
join, projection, and selection [4], as well as CRDT-like
lattices with algebraic composition [24]. The CALM The-
orem states that, if a program can be expressed entirely
using monotonic logic, it is guaranteed to be confluent—
that is, deterministic—despite the effects of network non-
determinism [6, 38]. Hence, monotonic operations form a
“safe” vocabulary for distributed programming: because
the program’s output is a deterministic function of its in-
put, it is much easier to check that correctness invariants
are preserved.

For data-centric languages such as Bloom, there is a
simple conservative test to determine the monotonicity of
individual rules or entire programs—essentially, mono-
tonicity is part of the language’s type system [4]. Because
monotonicity implies confluence, this test can identify a
program’s consistency requirements. For example, con-

sider the two programs from Section 2; in first-order logic,
the semantic difference between the programs surfaces
immediately. The deadlock detector enumerates the set
of processes {t|waits-for∗(t, t)}. The garbage collector
instead checks for non-existence in the set of references:

{o|¬∃(r ∈ refers-to∗(Root,r),r = o)}

Since negation is non-monotonic, static analysis can flag
the garbage collection program as possibly requiring (par-
tial) order guarantees to ensure deterministic results.

The language-centric approach to whole-program con-
sistency refines rather than replaces the flow-centric strat-
egy: the programmer is freed from the burden of choosing
the correct annotations and of understanding intra- and
inter-module dependencies.

7 Challenges and Opportunities
Providing flexible tools for managing distributed consis-
tency throughout the software stack will require solving
several challenges, both technical and sociological. In this
section, we outline several areas for future investigation,
with more questions than answers.

Software architecture and adoption. In this paper, we
have examined how consistency can be achieved at vari-
ous places between application logic and storage infras-
tructure. A general trend can be observed: as consistency
mechanisms move closer to the application, they lose
generality but gain efficiency. Which points in this spec-
trum will be the most compelling, and how can they be
realized in concrete software architectures? I/O-level con-
sistency mechanisms can be delivered and deployed as
prepackaged services (e.g., a coordination service such
as Zookeeper or a linearizable data store). In contrast, ad
hoc application-level consistency schemes are closely in-
tegrated with program logic. Neither approach seems like
an attractive way to deploy reusable consistency mecha-
nisms that are placed throughout the software stack.

Our approach with Bloom has been to develop a
new language that is well-suited to consistency analysis.
While this “revolutionary” strategy may bear fruit in the
long term, the need to adopt new programming models
can inhibit short-term adoption. Is a brand-new language
truly necessary, or can a variant of consistency analy-
sis be adapted for mainstream languages, perhaps with
the help of annotations or domain-specific constructs? In
contrast to Bloom, CRDTs are more limited in scope but
have proven easier to integrate into existing systems, as
illustrated by recent work on productizing CRDT support
in the Riak key-value store [19]. The dataflow-annotation
approach we have pursued with Blazes can be seen as a
middle ground. Which of these avenues (if any) will see
widespread adoption remains unclear.

Program analysis and language design. One way to
help programmers enforce consistency invariants is to
provide them with domain-specific tools for distributed
program analysis. New languages are one example we
have explored; limited annotations are another. There is
plenty of room for further work in that vein, and other
approaches deserve exploration as well. Ideally, for exam-
ple, one can imagine new programming language tools
that extract properties like monotonicity guarantees from
legacy programs and imperative languages. Short of that,
perhaps familiar but restricted subsets of traditional lan-
guages could be amenable to analysis and more easily
popularized (e.g., Java with immutable or fully-versioned
objects). There may also be ways to exploit the recent
progress in software synthesis, model checkers and theo-
rem provers. The field here seems wide open.

Goldilocks and the many I/O consistency models.
Many distributed consistency models have been proposed
at the storage level, ranging from weak models like even-
tual consistency to strong guarantees like linearizability.
Recently, a plethora of interesting new models have been
proposed [7, 25, 44, 45, 57], but an important question
remains unaddressed: how do the developers of an appli-
cation choose the right consistency model? If they forego
linearizability, they must consider that weaker consis-
tency models allow more undesirable phenomena (e.g.,
causality violations or lost updates). Most applications
can tolerate some of these phenomena but not others;
conversely, the cost of preventing different phenomena at
the I/O layer varies widely [9]. For a given application,
when is the cost of preventing a particular phenomenon
warranted? And how does the developer know that the
resulting application is correct?

As we have argued above, I/O-level consistency guar-
antees are specified in terms of properties of read-write
traces, so it is difficult to understand which low-level
consistency guarantees are both sufficient and neces-
sary to maintain application-level invariants. For exam-
ple, a shopping cart application might want to guaran-
tee that all of a user’s purchases have been reflected in
the cart before her “checkout” operation is processed.
This can be achieved using causal consistency, by having
the purchases “happen-before” the checkout (the pur-
chases themselves need no causal dependencies). Instead
of forcing programmers to understand the intricacies of
the many available I/O-level consistency models, can we
build tools to automatically map high-level application in-
variants down to low-level consistency mechanisms? For
example, the CALM Theorem allows Blazes to prove that
certain programs will be consistent over an eventually
consistent I/O layer. Can this kind of analysis be adapted
to a larger class of programs that exploit richer forms
of I/O consistency? The related problem of determin-

ing whether a given application can produce serializable
outcomes when run at a lower isolation level has been
studied in the database literature [31].

Beyond determinism. Work on eventual consistency of-
ten tries to guarantee deterministic behavior. For example,
confluence analysis identifies program fragments that pro-
duce deterministic outcomes despite non-deterministic
network behavior. Similarly, CRDTs ensure that all repli-
cas of an object converge to the same state, regardless of
duplicated or reordered messages. However, determinism
is too strong for some common application-level invari-
ants. Consider the simple invariant: “A purchase request
returns a confirmation if inventory is non-zero; other-
wise it returns failure.” This is non-deterministic—the set
of successful purchases depends on the order in which
messages are delivered and processed.

What is the best way to reason about non-deterministic
but well-defined correctness criteria? One strategy is to
simply encode the space of acceptable outcomes as a
disjunction (e.g., “Purchase X succeeds and Y fails OR
purchase X fails and Y succeeds”). A confluent system
that satisfies this disjunction ensures that an acceptable
outcome is always produced. However, enumerating the
space of acceptable outcomes scales poorly as application
complexity grows. Is there a more natural model than this
enumerated choice of outcomes, and, if so, can we build
program analysis tools to support it? More fundamen-
tally, beyond monotonicity, are there design patterns that
assist in achieving such “controlled non-determinism,”
and can such patterns be codified into theorems, analysis
techniques, and language constructs?

8 Conclusion

The development of reliable distributed applications de-
pends upon programmers’ ability to reason about con-
sistency. By narrowly focusing on I/O-level consistency,
traditional research in this area risks increasing irrele-
vance: as the latency and availability costs of traditional
consistency protocols have become prohibitive at scale,
developers have begun to avoid consistency mechanisms
entirely, instead relying on ad hoc, application-specific
rules for conflict resolution and reconciliation. We be-
lieve that the solution is to meet application developers
on their home turf: to explore a variety of consistency
mechanisms, analysis tools, and programming constructs
that operate at different layers of the software stack. The
goal should be to help programmers judiciously employ
consistency of the appropriate strength and to reason
about consistency wherever it is most natural. The core
tension lies in balancing expressivity and efficiency with
generality and modularity. We have sketched examples

and insights from our experience straddling these bound-
aries, but we suspect that further progress will require the
research community to reconsider long-held assumptions
about software architecture and the division between stor-
age and application logic.

Acknowledgments

We would like to thank Emily Andrews, Alex Rasmussen,
and the anonymous reviewers for their helpful feed-
back on this paper, and particularly our shepherd, Phil
Bernstein. This work was supported by the Air Force
Office of Scientific Research (grant FA95500810352),
DARPA XData Award FA8750-12-2-0331, the Natural
Sciences and Engineering Research Council of Canada,
the National Science Foundation (grants CNS-0722077,
IIS-0713661, and IIS-0803690), NSF CISE Expeditions
award CCF-1139158, the National Science Foundation
Graduate Research Fellowship (grant DGE-1106400),
and gifts from Amazon, Cisco, Clearstory Data, Cloud-
era, EMC, Ericsson, Facebook, FitWave, General Electric,
Google, Hortonworks, Intel, Microsoft, NetApp, NTT,
Oracle, SAP, Samsung, Splunk, VMware, and Yahoo!.

References

[1] S. E. Abdullahi and G. A. Ringwood. Garbage col-
lecting the Internet: a survey of distributed garbage
collection. ACM Computing Surveys, 30(3):330–
373, 1998.

[2] P. Alvaro, T. Condie, N. Conway, K. Elmeleegy,
J. M. Hellerstein, and R. Sears. BOOM Analytics:
Exploring data-centric, declarative programming
for the cloud. In EuroSys, 2010.

[3] P. Alvaro, N. Conway, J. M. Hellerstein, and
D. Maier. Blazes: coordination analysis for dis-
tributed programs. http://arxiv.org/abs/
1309.3324, 2013. In submission.

[4] P. Alvaro, N. Conway, J. M. Hellerstein, and W. R.
Marczak. Consistency analysis in Bloom: a CALM
and collected approach. In CIDR, 2011.

[5] P. Alvaro, W. R. Marczak, N. Conway, J. M. Heller-
stein, D. Maier, and R. Sears. Dedalus: Data-
log in time and space. In O. de Moor, G. Got-
tlob, T. Furche, and A. Sellers, editors, Datalog
Reloaded, volume 6702 of Lecture Notes in Com-
puter Science, pages 262–281. Springer Berlin /
Heidelberg, 2011.

http://arxiv.org/abs/1309.3324
http://arxiv.org/abs/1309.3324

[6] T. J. Ameloot, F. Neven, and J. Van den Bussche.
Relational transducers for declarative networking.
In PODS, 2011.

[7] M. S. Ardekani, P. Sutra, and M. Shapiro. Non-
monotonic snapshot isolation: scalable and strong
consistency for geo-replicated transactional sys-
tems. In SRDS, 2013.

[8] B. R. Badrinath and K. Ramamrithan. Semantics-
based concurrency control: Beyond commutativity.
ACM Transactions on Database Systems, 17(1):163–
199, 1992.

[9] P. Bailis, A. Davidson, A. Fekete, A. Ghodsi, J. M.
Hellerstein, and I. Stoica. Highly available transac-
tions: Virtues and limitations. To appear in VLDB,
2014.

[10] P. Bailis, A. Fekete, A. Ghodsi, J. M. Hellerstein,
and I. Stoica. The potential dangers of causal con-
sistency and an explicit solution. In SoCC, 2012.

[11] D. Barbará-Millá and H. Garcia-Molina. The de-
marcation protocol: a technique for maintaining
constraints in distributed database systems. The
VLDB Journal, 3(3):325–353, 1994.

[12] P. A. Bernstein and N. Goodman. Concurrency
control in distributed database systems. ACM Com-
puting Surveys, 13(2):185–221, 1981.

[13] P. A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database
Systems. Addison-Wesley, 1987.

[14] K. Birman, G. Chockler, and R. van Renesse. To-
ward a cloud computing research agenda. SIGACT
News, 40(2):68–80, 2009.

[15] K. Birman and T. Joseph. Exploiting virtual syn-
chrony in distributed systems. In SOSP, 1987.

[16] Bloom programming language. http://www.
bloom-lang.org.

[17] A. Brodsky and Y. Sagiv. Inference of monotonicity
constraints in Datalog programs. In PODS, 1989.

[18] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka,
P. Dimov, H. Ding, J. Ferris, A. Giardullo, S. Kulka-
rni, H. Li, M. Marchukov, D. Petrov, L. Puzar, Y. J.
Song, and V. Venkataramani. Tao: Facebook’s dis-
tributed data store for the social graph. In USENIX
ATC, 2013.

[19] R. Brown and S. Cribbs. Data structures in Riak.
RICON 2012 (https://speakerdeck.com/
basho/data-structures-in-riak).

[20] K. M. Chandy and L. Lamport. Distributed snap-
shots: determining global states of distributed sys-
tems. ACM Transactions on Computer Systems,
3(1):63–75, 1985.

[21] K. M. Chandy and J. Misra. A distributed algorithm
for detecting resource deadlocks in distributed sys-
tems. In PODC, 1982.

[22] J. Cheney, L. Chiticariu, and W.-C. Tan. Provenance
in databases: Why, how, and where. Foundations
and Trends in Databases, 1(4):379–474, 2009.

[23] D. R. Cheriton and D. Skeen. Understanding the
limitations of causally and totally ordered commu-
nication. In SOSP, 1993.

[24] N. Conway, W. R. Marczak, P. Alvaro, J. M. Heller-
stein, and D. Maier. Logic and lattices for dis-
tributed programming. In SoCC, 2012.

[25] B. F. Cooper, R. Ramakrishnan, U. Srivastava,
A. Silberstein, P. Bohannon, H.-A. Jacobsen, N. Puz,
D. Weaver, and R. Yerneni. PNUTS: Yahoo!’s
hosted data serving platform. In VLDB, 2008.

[26] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan,
H. Li, A. Lloyd, S. Melnik, D. Mwaura, D. Nagle,
S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szy-
maniak, C. Taylor, R. Wang, and D. Woodford.
Spanner: Google’s globally-distributed database. In
OSDI, 2012.

[27] S. B. Davidson, H. Garcia-Molina, and D. Skeen.
Consistency in Partitioned Networks. ACM Com-
puting Surveys, 17(3):341–370, 1985.

[28] G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels. Dynamo: Amazon’s
highly available key-value store. In SOSP, 2007.

[29] X. Défago, A. Schiper, and P. Urbán. Total order
broadcast and multicast algorithms: Taxonomy and
survey. ACM Computing Surveys, 36(4):372–421,
2004.

[30] A. A. Farrag and M. T. Özsu. Using semantic knowl-
edge of transactions to increase concurrency. ACM
Transactions on Database Systems, 14(4):503–525,
1989.

[31] A. Fekete. Allocating isolation levels to transac-
tions. In PODS, 2005.

http://www.bloom-lang.org
http://www.bloom-lang.org
https://speakerdeck.com/basho/data-structures-in-riak
https://speakerdeck.com/basho/data-structures-in-riak

[32] H. Garcia-Molina. Using semantic knowledge for
transaction processing in a distributed database.
ACM Transactions on Database Systems, 8(2):186–
213, 1983.

[33] R. Geambasu, A. A. Levy, T. Kohno, A. Krishna-
murthy, and H. M. Levy. Comet: an active dis-
tributed key-value store. In OSDI, 2010.

[34] S. Gilbert and N. Lynch. Brewer’s conjecture and
the feasibility of consistent, available, partition-
tolerant web services. SIGACT News, 33(2):51–59,
2002.

[35] A. Gupta and I. S. Mumick. Maintenance of mate-
rialized views: Problems, techniques, and applica-
tions. IEEE Data Engineering Bulletin, 18(2):3–18,
1995.

[36] P. Helland and D. Campbell. Building on quicksand.
In CIDR, 2009.

[37] P. Helland and D. Haderle. Engagements: Building
eventually ACiD business transactions. In CIDR,
2013.

[38] J. M. Hellerstein. The Declarative Imperative: Ex-
periences and conjectures in distributed logic. SIG-
MOD Record, 39(1):5–19, 2010.

[39] M. P. Herlihy. Optimistic concurrency control for
abstract data types. In PODC, 1986.

[40] M. P. Herlihy and J. M. Wing. Linearizability: a
correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Sys-
tems, 12(3):463–492, 1990.

[41] L. Huelsbergen and P. Winterbottom. Very con-
current mark-&-sweep garbage collection without
fine-grain synchronization. In International Sympo-
sium on Memory Management, 1998.

[42] A. Kumar and M. Stonebraker. Semantics based
transaction management techniques for replicated
data. In SIGMOD, 1988.

[43] J. Leibiusky, G. Eisbruch, and D. Simonassi. Get-
ting Started with Storm - Continuous Streaming
Computation with Twitter’s Cluster Technology.
O’Reilly, 2012.

[44] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G.
Andersen. Don’t Settle for Eventual: Scalable
Causal Consistency for Wide-Area Storage with
COPS. In SOSP, 2011.

[45] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G.
Andersen. Stronger semantics for low-latency geo-
replicated storage. In NSDI, 2013.

[46] D. Maier, A. O. Mendelzon, and Y. Sagiv. Testing
implications of data dependencies. ACM Transac-
tions on Database Systems, 4(4):455–469, 1979.

[47] C. Malta and J. Martinez. A framework for design-
ing concurrent and recoverable abstract data types
based on commutativity. In International Sympo-
sium on Computer and Information Sciences, 1991.

[48] W. R. Marczak, P. Alvaro, N. Conway, J. M. Heller-
stein, and D. Maier. Confluence analysis for dis-
tributed programs: a model-theoretic approach. In
Datalog 2.0, 2012.

[49] P. E. O’Neil. The Escrow transactional method.
ACM Transactions on Database Systems, 11(4):405–
430, 1986.

[50] C. Papadimitriou. The serializability of concurrent
database updates. Journal of the ACM, 26(4):631–
653, 1979.

[51] H.-G. Roh, M. Jeon, J.-S. Kim, and J. Lee. Repli-
cated abstract data types: Building blocks for col-
laborative applications. Journal of Parallel and
Distributed Computing, 71(3):354–368, 2011.

[52] A. Schiper and A. Sandoz. Strong stable proper-
ties in distributed systems. Distributed Computing,
8(2):93–103, 1994.

[53] F. B. Schneider. Implementing fault-tolerant ser-
vices using the state machine approach: a tutorial.
ACM Computing Surveys, 22(4):299–319, 1990.

[54] P. M. Schwarz and A. Z. Spector. Synchronizing
shared abstract types. ACM Transactions on Com-
puter Systems, 2(3):223–250, 1984.

[55] M. Shapiro, N. Preguiça, C. Baquero, and M. Za-
wirski. Conflict-free replicated data types. In In-
ternational Symposium on Stabilization, Safety, and
Security of Distributed Systems, 2011.

[56] J. Shute, R. Vingralek, B. Samwel, B. Handy,
C. Whipkey, E. Rollins, M. Oancea, K. Littlefield,
D. Menestrina, S. Ellner, J. Cieslewicz, I. Rae,
T. Stancescu, and H. Apte. F1: A distributed SQL
database that scales. In VLDB, 2013.

[57] Y. Sovran, R. Power, M. K. Aguilera, and J. Li.
Transactional storage for geo-replicated systems. In
SOSP, 2011.

[58] P. A. Tucker, D. Maier, T. Sheard, and L. Fegaras.
Exploiting punctuation semantics in continuous
data streams. IEEE Transactions on Knowledge
and Data Engineering, 15(3):555–568, 2003.

[59] W. Vogels. Eventually consistent. Communications
of the ACM, 52(1):40–44, 2009.

[60] W. E. Weihl. Commutativity-based concurrency
control for abstract data types. IEEE Transactions
on Computers, 37(12):1488–1505, 1988.

	Introduction
	Case Study
	Consistency at the Extremes
	I/O-Level Consistency
	Application-Level Consistency

	Object-Level Consistency
	Flow-Level Consistency
	Language-Level Consistency
	Dependency Analysis
	Semantics

	Challenges and Opportunities
	Conclusion

