
BloomUnit: Declarative Testing for Distributed Programs

Peter Alvaro
UC Berkeley

palvaro@cs.berkeley.edu

Andrew Hutchinson
UC Berkeley

ahutchinson@berkeley.edu

Neil Conway
UC Berkeley

nrc@cs.berkeley.edu
William R. Marczak

UC Berkeley
wrm@cs.berkeley.edu

Joseph M. Hellerstein
UC Berkeley

hellerstein@cs.berkeley.edu

ABSTRACT
We present BloomUnit, a testing framework for distributed programs
written in the Bloom language. BloomUnit allows developers to
write declarative test specifications that describe the input/output
behavior of a software module. Test specifications are expressed as
Bloom queries over (distributed) execution traces of the program
under test. To allow execution traces to be produced automatically,
BloomUnit synthesizes program inputs that satisfy user-provided
constraints. For a given input, BloomUnit systematically explores
the space of possible network message reorderings. BloomUnit
searches this space efficiently by exploiting program semantics to
ignore “uninteresting” message schedules.

We illustrate the utility of BloomUnit by demonstrating an incre-
mental process by which a programmer might provide and refine a
set of queries and constraints until they define a rich set of correct-
ness tests for a distributed system.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—Distributed
debugging, testing tools

Keywords
BloomUnit, Bloom, disorderly programming, distributed systems,
input generation, unit testing

General Terms
Languages, Design, Reliability, Verification

1. INTRODUCTION
Although distributed systems are increasingly ubiquitous, writ-

ing correct distributed programs remains difficult and error-prone.
Recently, several researchers have proposed using declarative lan-
guages drawn from database research to implement distributed sys-
tems (e.g., [1, 4, 14, 16]).

Nevertheless, writing correct distributed programs remains chal-
lenging because developers must reason about asynchrony, concur-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DBTest’12, May 21, 2012 Scottsdale, AZ, U.S.A.
Copyright 2012 ACM 978-1-4503-1429-9/12/05 ...$10.00.

rency, and partial failure—achieving confidence in program cor-
rectness requires considering the many possible combinations of
message reorderings and failures. To address this problem, there are
two broad approaches: formal methods and testing.

Formal methods: In this approach, the developer writes a formal
specification of the program’s behavior in a modeling language (such
as Promela [10]) and then proves that the specification satisfies the
developer’s desired correctness properties. Formal methods are pow-
erful because they allow the specification’s complete state space
to be explored, which can find hard-to-reproduce errors. Unfortu-
nately, formal methods typically require considerable user expertise
in formal modeling languages and verification tools. Hence, these
techniques have not seen widespread developer adoption to date.

Testing: In contrast, many developers write test cases to validate
that, for a particular concrete input, the program produces the ex-
pected result. Testing has seen widespread adoption because it re-
quires little upfront investment in tools or mathematical training—
developers can quickly write test cases for simple behaviors and
see an immediate benefit. However, testing distributed programs is
relatively ineffective. First, testing cannot easily handle the wide
array of network configurations allowed by many distributed pro-
grams. Each test case only covers a single system configuration and
input set; to test a wide range of configurations, network topologies
and program inputs requires writing many test cases and building
considerable infrastructure. Second, most test frameworks cannot
control network nondeterminism; hence, it is difficult to write a test
case to verify that a program is correct in the face of a particular
network behavior.

In this paper, we describe our initial work on BloomUnit, a test-
ing framework that addresses these concerns. BloomUnit is de-
signed to test programs written in Bloom, a declarative language
for distributed programming recently developed by our group [2, 6].
BloomUnit employs three key techniques:

1. BloomUnit users write declarative test specifications that
describe the intended input-output behavior of the program.
Test specifications are written as Bloom queries over the (dis-
tributed) execution trace of the program; using Bloom avoids
the need for users to learn another language. BloomUnit al-
lows “pay as you go” testing: a simple test specification is
equivalent to a single test case, while a more complex test
specification can encapsulate many different test cases.

2. Rather than supplying concrete inputs for test specifications,
users instead specify the constraints that the input must sat-
isfy; BloomUnit then automatically generates inputs that are
consistent with those constraints.

3. Finally, BloomUnit can systematically explore the space of

Input
Constraints

Bloom
Module

Alloy
Solver

Input
1

Input
2 [...]

BloomUnit::
Simulate

Bloom
Runtime

[...] Run
1.2

Run
1.1

Test
Specification

BloomUnit::
Verify

Failure
1.1

Alloy
Formula

Figure 1: The BloomUnit system.

Op Valid lhs types Meaning
<= table, scratch lhs includes the content of the rhs in the current

timestep.
<+ table, scratch lhs will include the content of the rhs in the

next timestep.
<- table tuples in the rhs will be absent from the lhs at

the start of the next timestep.
<∼ channel tuples in the rhs will appear in the (remote) lhs

at some nondeterministic future time.

Figure 2: Bloom collection types and operators.

possible network behaviors. To reduce the size of this space,
we leverage recent results on the connection between logical
monotonicity and distributed consistency [2, 3, 9]. BloomUnit
can recognize that certain code fragments are insensitive to
message delivery order, which reduces the space of message
orders that must be explored.

The BloomUnit architecture is sketched in Figure 1. Double rect-
angles represent inputs provided by the user. A series of inputs are
automatically generated from the provided constraints, and for each
input, a series of executions is explored by the simulator. An execu-
tion may produce a witness to an assertion failure, at which time the
simulation halts.

2. BACKGROUND: BLOOM
BloomUnit is a testing framework for programs written in Bloom,

a declarative language for programming distributed systems. Due
to space constraints, we describe Bloom only briefly here; the inter-
ested reader is referred to the Bloom website [6] for details.

Bloom programs are bundles of declarative statements about
collections of facts (tuples). A statement can only reference data that
is local to a node. A Bloom program proceeds through a series of
atomic “timesteps.” In each timestep, certain “ground facts” exist in
collections due to persistence or the arrival of messages from outside
agents (e.g., network messages). The statements in a Bloom program
specify the derivation of additional facts, which can be declared to
exist either in the current timestep, at the very next timestep, or at
some nondeterministic time at a remote node. Bloom collection and

1 module DeliveryProtocol
2 state do
3 interface input, :pipe_in,
4 [:dst, :src, :ident] => [:payload]
5 interface output, :pipe_sent,
6 [:dst, :src, :ident] => [:payload]
7 interface output, :pipe_out,
8 [:dst, :src, :ident] => [:payload]
9 end
10 end

Figure 3: Abstract delivery protocol in Bloom.

operator types are listed in Figure 2.
A statement takes the form:
<collection-identifier> <op> <collection-expression>

The left-hand side (lhs) is the name of the output collection and the
right-hand side (rhs) is an expression that produces a collection.1

The operator defines the temporal behavior of the statement—i.e.,
whether derived lhs facts will appear in the current timestep (<=), be
added or removed in the next timestep (<+ or <-, respectively), or
will appear at a remote node at a nondeterministic future time (<~).

Bloom provides several collection types to represent different
kinds of program state. The contents of a table persist across consec-
utive timesteps (unless that persistence is interrupted via a Bloom
statement containing the <- operator described above). Scratch col-
lections are useful for transient data like intermediate results and
“macro” definitions that enable code reuse. Network messages are
captured via channel collections; a channel is a scratch collection
whose content “appears” at nondeterministic timesteps. When a
fact is derived into a channel (via the <~ operator), a network mes-
sage will be sent to the address contained in the channel’s location
specifier column (prefixed by @ in the channel’s state declaration).

To enable encapsulation, Bloom programs are organized into mod-
ules with explicit inputs and outputs declared as interface collections.
A module’s interface declarations constitute its signature: Figure 3
shows the signature of an abstract delivery protocol. Facts inserted
into pipe_in are sent over the network to the address appearing in
the dst field. They subsequently appear in pipe_out at the receiver
and in pipe_sent at the sender (to indicate successful delivery).
Different protocol implementations may provide different semantics
for this abstract protocol. For example, a reliable delivery protocol
would not produce pipe_sent facts until an acknowledgment has
been received from the recipient, whereas an ordered delivery proto-
col would constrain the order in which facts appear in pipe_out.

The Bloom interpreter provides static analysis capabilities to
(conservatively) detect when distributed programs may produce
nondeterministic results [2]. We will demonstrate how BloomUnit
complements this static analysis, by producing traces of executions
that witness predicted nondeterminism, and by building confidence
in deterministic programs that may fail the analysis.

The current Bloom prototype is implemented as a domain-specific
language (DSL) on top of Ruby. Hence, Bloom programs take the
form of annotated Ruby classes; statements and collections are
declared in bloom and state blocks, respectively. A small amount
of Ruby code is needed to instantiate the Bloom program and begin
executing it; more details are available on the Bloom website [6].

3. TEST SPECIFICATIONS
In this section, we demonstrate how to write declarative test speci-

fications using BloomUnit. As an example, we consider how to write
test specifications for a simple FIFO delivery protocol. FIFO delivery

1The rhs can include any of the typical relational operators, includ-
ing selection, projection, join, grouping, and aggregation.

1 module FIFOSpec
2 bloom do
3 fail <= (pipe_out_log * pipe_out_log).pairs do |p1, p2|
4 if p1.src == p2.src and p1.dst == p2.dst and
5 p1.ident < p2.ident and p1.time >= p2.time
6 ["out-of-order delivery: #{p1.inspect} < #{p2.inspect}"]
7 end
8 end
9 end
10 end

Figure 4: A test specification for FIFODelivery.

implements the abstract DeliveryProtocol interface (Figure 3),
with the additional property that if node A sends message m1 to
B and then sends m2 to B in a subsequent timestep, m1 should ap-
pear in pipe_out at B before m2 does. The FIFO ordering between
messages is encoded as a sequence number in the ident column.

In traditional testing, a programmer associates a set of concrete
inputs with one or more assertions that must hold over program
output. For example, to test the FIFO delivery protocol we could set
up a scenario in which two messages x and y are sent from n1 to n2.
We would then write an assertion to check that when the messages
are delivered at n2, the order of delivery matches the order in which
the messages were sent (i.e., x is delivered before y iff x.ident <
y.ident). Note that each test describes a single concrete scenario;
to test that the program operates correctly in another scenario (e.g.,
involving different numbers of messages or nodes), another test
would be required.

A test specification is a Bloom program that does not use any
temporal operators (<~, <+ and <-) and has a single output interface
fail. By convention, deriving a tuple into fail indicates a violation
of the specification. Most specifications will define constraints that
must hold over the input and output interfaces of the module under
test; these constraints might also refer to temporal details like the
ordering of events. To support this pattern, BloomUnit automatically
creates a “log table” for every collection in the tested program.
Each log table has the suffix “_log” and contains all the tuples ever
inserted into the collection, along with a time column that records
the (node-local) timestep when the corresponding fact was derived.

Figure 4 shows an example test specification for the FIFO delivery
program. The specification considers all pairs of delivered messages;
the specification is violated if two messages were sent from n1 to
n2 but the order of delivery (given by time) is inconsistent with the
sender’s FIFO order (given by ident). Note that because Figure 4 is
a Bloom program, we can check that the specification holds over a
particular execution trace by simply executing the specification using
an unmodified version of the Bloom runtime. Because specifications
cannot contain temporal operators, they are essentially “one-shot”
queries that can be computed in a single timestep.

4. INPUT GENERATION
When a programmer writes a unit test, they apply a mental model

of the space of relevant executions and test a point or set of points
from that space. By increasing the number of distinct test points,
a programmer increases her confidence that the behavior of the
program is consistent with her model of its input/output contract.
While declarative unit tests can succinctly “cover” a large space
of executions, we still must exploit the programmer’s intuitions
about the space of possible program inputs to ensure that we cover
“relevant” executions. Inspired by work on random testing from user-
defined distributions like QuickCheck [8], and by the use of model
finding tools to generate inputs from constraints [13], BloomUnit
automatically generates a set of plausible inputs for a given Bloom

1 // Exclusion Constraints
2 all p1 : pipe_in | p1.src = p1.location
3 all p1, p2 : pipe_in
4 | (p1.src = p2.src and p1.ident = p2.ident)
5 ⇒ p1.payload = p2.payload

7 // Inclusion Constraints
8 some p1, p2 : pipe_in
9 | p1 , p2 ⇒ (p1.src = p2.src and p1.dst = p2.dst)

Figure 5: Input constraints for the FIFO delivery protocol, spec-
ified using Alloy.

module from user guidance in the form of constraints.
The set of inputs that a Bloom module receives over time dur-

ing a test run may be viewed as a database instance. For example,
an input trace for an implementation of the DeliveryProtocol
shown in Figure 3 can be represented as an instance with a single
relation, pipe_in, whose schema is extended with two additional
key columns, time and location, representing logical time and
physical location. Because most Bloom programs are distributed,
their executions involve multiple agents that cannot in general view
the same state at the same time.

We observe two general classes of constraints that aid a program-
mer in designing input data: exclusion and inclusion constraints.
Exclusion constraints rule out inputs that are not possible in the
environment in which the program will run. For example, in the
delivery protocol shown in Figure 3, each client (identified by the
src column) identifies each message payload with a unique inte-
ger ident. This is naturally encoded as a functional dependency:
src, ident → payload. We can rule out “spoofing” with another
exclusion constraint that ensures that the value of the location
column be identical to the value of the src column. Ideally, program-
mers should also ensure that the generated input/output instances
produce a range of different, “interesting” executions. While ex-
clusion constraints excluded certain records from admissible input
instances, inclusion constraints ensure that input data can sufficiently
cover the space of possible executions by ensuring the inclusion of
certain records. An execution that tests a FIFO delivery module is
uninteresting unless it involves at least two messages to order: we
encode this as a constraint on the cardinality of pipe_in. Figure 5
shows how this collection of constraints can be concisely expressed
in the Alloy language.

We approach the problem of input generation as a problem of
model-finding in first-order relational logic. Any model of a set of
constraints constitutes an input instance or test. We use the Alloy
solver [11], which provides an intuitive first-order language on
relations and integration with state of the art SAT solvers for finding
satisfying models. Alloy enumerates satisfying models, which we
convert to concrete inputs for testing executions of Bloom modules.
We use a large number of generated input instances to best cover
the space of possible inputs. Alloy’s capability to break symmetry
during model enumeration increases our confidence that generated
inputs are non-isomorphic [11, 13].

BloomUnit analyzes a particular Bloom module’s interface and
generates default Alloy model constraints. The programmer can then
specify additional exclusion and inclusion constraints. We expect
that programmers will typically specify initial constraints before
testing and add others during testing in a “pay as you go” fashion.

5. EXPLORATION OF EXECUTION NON-
DETERMINISM

Distributed executions are nondeterministic because of asyn-

chronous communication; agents executing the same program over
the same inputs may perceive different message orderings in differ-
ent runs. The BloomUnit system we have described—which ensures
that a collection of user-defined assertions are respected as the mod-
ule under test is presented with a series of generated inputs—is
incomplete because any run we might execute on a fixed input is
only one of many possible executions. Programmers who have writ-
ten unit or integration tests for distributed systems are familiar with
the miserable phenomenon of nondeterministic test failures and
assertions that “usually pass.”

To ensure that a given assertion passes on a given set of inputs, we
must ensure that it passes in all possible executions over those inputs.
Because Bloom relegates all nondeterminism to channel reorderings
and omissions, the exploration of all possible executions reduces
to the exploration of all possible message orderings and losses. In
the style of software model checking [5, 12, 15], we could modify
the Bloom runtime to support the exhaustive exploration of message
delivery orders and omissions. Unfortunately, such a naive search
of this space is intractable.

The CALM theorem [2, 3, 9]—which establishes that logical
monotonicity implies eventual consistency—can be used to prune
the space of possible message delivery orders. Assuming no mes-
sage omissions, monotonic code will produce the same output for
any given input, regardless of network nondeterminism. Therefore
exploring a single delivery order is sufficient to test a monotonic
program fragment. Further, some delivery orders are uninteresting
even in the execution of a nonmonotonic program. A distributed
Bloom program can only produce different outputs for the same
inputs when a nonmonotonic operation follows an asynchronous
operation in the program’s dataflow [2]. Hence, to explore all execu-
tions that could produce different outputs, we need only explore all
delivery orderings for messages that could concurrently be in-flight
and destined for an agent at which a nonmonotonic operation will
process the message.

To illustrate the effect of nonmonotonicity on program outputs,
consider a Bloom program involving agents A, B, C and D. A sends a
set of messages (call it M1) to B, which stores them in a log. C sends
a set of messages (M2) to B, each causing B to count the messages
in the log and send the count (M3) to D, which records the count in
a table. Exploring different message delivery order permutations for
M1∪M2 will indeed reveal that M3 has different contents in different
executions, reflecting for each m ∈ M3 how many of the messages
in M1 had arrived when each m2 ∈ M2 arrived. The nonmonotonic
count aggregate continually “revises” its outputs as its inputs change,
and because we ship and then store these “estimates,” we effectively
record evidence of races between the messages in M1.

However, varying the delivery order of the messages in M3 has
no effect on the final state of the program visible in D’s log table. D
stores the messages in a set, and when the messages are delivered
the set will have the same contents, regardless of the delivery order.

Now consider executions in which messages are lost in addition
to being reordered. The space of possible lossy executions is smaller
than that of all permutations but is still intractable. If we consider
losses of messages in the delivery of M1 ∪M2, we also must explore
all subsets and then all permutations of elements in those subsets.

Exhaustive search of this reduced space of “interesting” message
orderings is impractical for even modest inputs: the best that we
can do is sample from this space of message orders and omissions.
We have modified the Bloom runtime to provide a stochastic model
of lossy communication and message reordering. Each node in the
distributed system is simulated at a single site, so that the simulator
has complete knowledge of the global state. We redefine channel
collections so that they buffer tuples before interacting with the

1 module CartClientProtocol
2 state do
3 interface input, :client_checkout,
4 [:client, :server, :session] => [:reqid]
5 interface input, :client_action,
6 [:client, :server, :session, :reqid] => [:item, :action]
7 interface output, :client_response,
8 [:client, :server, :session] => [:items]
9 end
10 end

Figure 6: Shopping cart client protocol.

1 module DisorderlyCart
2 include CartProtocol

4 state do
5 table :action_log, [:session, :reqid] => [:item, :action]
6 scratch :item_sum, [:session, :item] => [:num]
7 scratch :session_final, [:session] => [:items, :counts]
8 end

10 bloom :on_action do
11 action_log <= action_msg do |c|
12 [c.session, c.reqid, c.item, c.action]
13 end
14 end

16 bloom :on_checkout do
17 temp :checkout_log <=
18 (checkout_msg * action_log).rights(:session => :session)
19 item_sum <= checkout_log.group([:session, :item],
20 sum(:action)) do |s|
21 s if s.last > 0
22 end
23 session_final <= item_sum.group([:session],
24 accum(:item), accum(:num))
25 response_msg <~ (session_final * checkout_msg).pairs
26 (:session => :session) do |c,m|
27 [m.client, m.server, m.session, c.items.zip(c.counts).sort]
28 end
29 end
30 end

Figure 7: Implementation of a shopping cart server.

network. Each time the system quiesces,2 the runtime delivers a
randomly chosen subset of the buffered messages on all channels.
At the end of the execution, a specified number of messages are
guaranteed to have been dropped.

6. CASE STUDY: SHOPPING CARTS
In this section, we illustrate how BloomUnit combines declarative

assertions, constraint-guided input generation and exploration of
execution nondeterminism to substantially improve the ease and
accuracy of testing Bloom programs. As a running example, we will
reintroduce the e-commerce scenario presented in Alvaro et al. [2]
and describe the process of using BloomUnit to create a rich set of
application-specific tests.

Figure 6 presents an abstract interface for a shopping cart service.
Clients interact with the service by adding and removing items from
the cart (by inserting tuples into client_action) and performing a
checkout (by inserting a tuple into client_checkout). Note that in
client_action, adding k copies of an item to a cart is represented
as a fact with k in the action field; removing k copies of an item is
represented as a −k action. The session attribute of both interfaces
is an identifier for a particular cart: we assume that only one client
makes updates within a particular session.

2This is easy to detect, as we are locally simulating a distributed
system. The system is quiescent when all nodes have reached a
fixpoint and have no more messages to send.

The shopping cart client implementation (shown in Figure 10
in the appendix) is trivial: it satisfies the CartClientProtocol
interface simply by sending its inputs to the server and returning
the server’s response as the client’s output. Figure 7 contains an
implementation of the shopping cart server code, similar to the
“disorderly” design presented in Alvaro et al. The server logs the
client actions it receives (lines 11–13). When the server receives
a checkout message, the log of actions for the appropriate session
is summarized, and the resulting summary is returned to the client
(lines 17–28).

In practice, programs are often implemented before being care-
fully specified. We recount our experience starting with an imple-
mentation of the shopping cart service and then using BloomUnit to
assist us in “bootstrapping” a set of correctness tests.

6.1 Input constraints
We began by building a set of Alloy constraints to describe legal

inputs to the shopping cart service. Given the code in Figures 10
and 7, BloomUnit generated a “default” Alloy specification using
the information in the Bloom collection declarations. That is, the de-
fault constraints ensured that input tuples contained the appropriate
number of columns and respected the interface key constraints, but
each column value could be an arbitrary string.

We then ran the system using Alloy-generated input and observed
an immediate runtime error. The error occurred because line 20 of
Figure 7 evaluates the sum aggregate over the action column of
client_action, but Alloy generated arbitrary string values that
cannot be summed. We added an exclusion constraint to force the
action column to take on only integer values. To simplify our
model, further, we only consider actions in the set {−1, 1}.

When we ran the system with this additional constraint, we ob-
served that the (session, reqid) key of the action_log collec-
tion was violated by the statement on lines 11–13. This happened
because the cart service assumes that there will not be two different
client actions that have the same request ID and session ID. Hence,
we added another Alloy constraint to capture key uniqueness:
all a1,a2: client_action
| al , a2 ⇒ a1.session , a2.session or a1.reqid , a2.reqid

After adding this constraint we observed no more explicit errors,
but we also noticed that the system did not produce any facts in
the program’s output interface. Using Bloom’s dataflow debugging
tools [6], we observed that the synthesized input data passed through
the dataflow only as far as the checkout_log collection, which
is defined on lines 17–18 as a join between checkout_msg and
action_log on session. That is, the cart service did not return
any results upon receiving a checkout for an “empty” client session.
Depending on application requirements, this might be considered a
bug, which could be fixed by replacing the inner join on lines 17–18
with an outer join. Instead, we chose to add another input constraint
to ensure that every set of client updates is associated with at least
one checkout operation:
all a: client_action | some c: client_checkout
| a.session = c.session

After adding this constraint, all test runs produced output and did
not yield any runtime exceptions.

Alloy attempts to find “small” models that satisfy the input con-
straints, so we added a few more inclusion constraints to rule out
models that were “too small” for our purposes. We wanted to en-
sure that all interactions with the shopping cart involve some min-
imum number of actions. Moreover, an “interesting” execution of
a shopping cart service involves multiple updates within the same
session—and within a session, to the same item. We added another
inclusion constraint to achieve this:

some a1,a2: client_action
| a1.session = a2.session and a1.item = a2.item

6.2 Test specification
At this point, BloomUnit was capable of producing reasonable

input values for the cart system, but we did not yet know whether
the outputs produced by our cart implementation were correct. To
establish this, we developed a BloomUnit test specification—that
is, a Bloom program whose input was an execution trace of the
system, and whose output, if any, constituted correctness violations
observed in the trace. Figure 8 shows such a specification. Lines 9–
12 separate the input stream action_msg into a stream of additions
and deletions of individual cart items, summing the total number
of each. Lines 13–17 calculate the totals for each item by taking
the difference of the sum of additions and the sum of deletions
(and ignoring items with a negative count, a business rule also
enforced by our cart service). Lines 19–23 flag a violation if the
totals computed by the specification differ from those computed by
the implementation under test.

When we reran BloomUnit using the test specification, we en-
countered a correctness violation. Replaying the trace using the
dataflow debugger immediately identified the cause: Alloy gener-
ated an input set in which a checkout operation was transmitted to
the server, followed by additional add/remove operations for the
same session. This causes the server’s checkout response to not
include the “late” client operations. This could be fixed by rejecting
“late” operations in the client code, but we chose instead to add an
Alloy constraint to require that no client actions be submitted after a
checkout operation for a given session:

all c: client_checkout | all a: client_action
| a.session = c.session ⇒ a.time < c.time

Next, we used BloomUnit’s ability to explore network nondeter-
minism to examine how the cart service behaved in the presence of
message reordering. This revealed a serious bug: because channels
do not provide any ordering guarantees, client actions and checkout
operations can arrive in arbitrary order at the cart service (regardless
of the order in which these messages are generated by the client).
Because the cart service performs a nonmonotonic operation (ag-
gregation) on the cart state when a checkout is received, the CALM
theorem suggests that the cart server may need additional coordi-
nation logic to ensure deterministic results. BloomUnit’s ability to
explore different message schedules confirms that coordination is
indeed required. We adjusted the client to include a “manifest” in
the checkout message describing all the cart actions that must be
reflected in the checkout response, and then modified the server
to wait until the manifest has been satisfied before sending back
the checkout response. After making this change, our cart service
satisfied the test specification.

7. DISCUSSION
When programmers write unit tests, they invest a certain amount

of intuition about a program’s desired behavior and expected inputs.
In return, they increase their confidence that the program behaves
correctly and that it will continue to do so as its functionality evolves.
Our goal in developing BloomUnit was to retain the simplicity and
“pay as you go” nature of testing but to provide a greater “return
on investment.” In Section 6, we discussed using BloomUnit in one
(albeit common) scenario: given an implementation, we incremen-
tally developed a set of input constraints and a test specification. We
briefly discuss some other use cases below.

We were not surprised to learn that the first, “uncoordinated” im-
plementation of the disorderly cart had nondeterministic outputs

1 module CartSpec
2 state do
3 scratch :adds, [:session, :item, :cnt]
4 scratch :dels, [:session, :item, :cnt]
5 scratch :itemcnt_final, [:session, :item, :cnt]
6 end

8 bloom do
9 adds <= client_action_log {|l| l if l.action == 1}.group
10 ([:session, :item], count(:reqid))
11 dels <= client_action_log {|l| l if l.action == -1}.group
12 ([:session, :item], count(:reqid))
13 itemcnt_final <= (adds * dels).outer.pairs
14 (:session => :session, :item => :item) do |l, r|
15 deletes = r.cnt.nil? ? 0 : r.cnt
16 [l.session, l.item, l.cnt - deletes] if l.cnt - deletes > 0
17 end

19 fail <= (itemcnt_final * client_response_log).pairs
20 (:session => :session) do |c, r|
21 cnt = r.items.find{|i| i.first == c.item}[1]
22 ["#{cnt} vs #{c.cnt}"] if cnt != c.cnt
23 end
24 end
25 end

Figure 8: Test specification for the shopping cart system.

given message reordering; the CALM static analysis [2] had already
warned us of this possibility. Instead of relying on the Bloom com-
piler to synthesize a heavyweight coordination protocol to rule out
this nondeterminism, we chose to coordinate by hand, using domain
knowledge about the cart application. When we repaired the pro-
gram by manually coordinating action and checkout messages, our
conservative analysis continued to flag the program as potentially in-
consistent. Thus BloomUnit provides a complementary technology
to our static analyses. First, it provides a concrete “witness” of the
incorrect runs predicted by CALM analysis. Once the program is
repaired, BloomUnit gives empirical evidence that the added logic
rules out the witness execution and increases our confidence that the
program is indeed deterministic.

We have already uncovered a surprising number of bugs—mostly
related to message ordering—in our library code using techniques
like the one sketched in the previous section. As we add new li-
braries, we employ a test-driven style, beginning with an input
model and a loose specification, and incrementally refining the spec
as we develop the program. When we encounter bugs in the field, we
generalize from the concrete inputs that reproduce the issue to input
constraints that, in principle, cover a larger space of problematic
inputs and make the “fix” more general as well.

Designers must sometimes choose between multiple candidate
implementations of a particular system (e.g., the two shopping
cart implementations presented in Alvaro et al. [2]). Just as we
used BloomUnit to establish a notion of “loose determinism” for
manually coordinated code, we may use it to reason about “loose
equivalence” of programs implementing the same specification. For
example, Figure 8 is a valid test specification for both cart implemen-
tations; running a large number of tests on both implementations in
which different inputs and message orderings are explored builds
confidence that the “disorderly” and “destructive” carts essentially
implement the same abstract program.

Often, a BloomUnit specification is effectively a local, synchronous
implementation of the distributed module under test. In principle,
we could synthesize specifications of Bloom programs automati-
cally by rewriting them to remove all temporal operators. Doing so
would ensure that message delivery is instantaneous and all races are
avoided. We have not adopted this strategy because it fails to address
the question of whether the rewritten serial program is correct; as a

definition of correctness, it either tautological or incomplete. Instead,
in the style of multiversion programming [7], we deliberately write
a separate specification, when possible using a different style or
different constructs that the original implementation. This gives us
greater confidence that the specification does not actually contain
and conceal bugs from the original implementation.

Acknowledgments
This work was supported by the Air Force Office of Scientific Re-
search (grant FA95500810352), the Natural Sciences and Engineer-
ing Research Council of Canada, the Natural Science Foundation
(grants IIS-0713661, CNS-0722077, and IIS-0803690), and gifts
from NTT Multimedia Communications Laboratories and Microsoft
Research.

8. REFERENCES
[1] P. Alvaro et al. BOOM Analytics: exploring data-centric,

declarative programming for the cloud. In EuroSys, 2010.
[2] P. Alvaro et al. Consistency Analysis in Bloom: a CALM and

Collected Approach. In CIDR, 2011.
[3] T. J. Ameloot, F. Neven, and J. Van den Bussche. Relational

Transducers for Declarative Networking. In PODS, 2011.
[4] N. Belaramani et al. PADS: A Policy Architecture for building

Distributed Storage Systems. In NSDI, 2009.
[5] D. Beyer et al. The software model checker BLAST:

Applications to software engineering. Int. J. Softw. Tools
Technol. Transf., 9(5):505–525, Oct. 2007.

[6] Bloom programming language.
http://www.bloom-lang.org.

[7] L. Chen and A. Avizienis. N-version programming: a
fault-tolerance approach to reliability of software operation. In
International Conference on Fault Tolerant Computing, 1978.

[8] K. Claessen and J. Hughes. QuickCheck: a lightweight tool
for random testing of Haskell programs. In ICFP, 2000.

[9] J. M. Hellerstein. The declarative imperative: experiences and
conjectures in distributed logic. SIGMOD Rec., 39:5–19,
September 2010.

[10] G. Holzmann. The SPIN Model Checker: Primer and
Reference Manual. Addison-Wesley Professional, 2003.

[11] D. Jackson. Software Abstractions: Logic, Language, and
Analysis. The MIT Press, 2006.

[12] R. Jhala and R. Majumdar. Software model checking. ACM
Comput. Surv., 41, 2009.

[13] S. Khurshid and D. Marinov. TestEra: Specification-based
testing of Java programs using SAT. Automated Software
Engg., 11(4):403–434, Oct. 2004.

[14] B. T. Loo et al. Declarative networking: language, execution
and optimization. In SIGMOD, 2006.

[15] M. Musuvathi et al. CMC: A pragmatic approach to model
checking real code. In OSDI, 2002.

[16] F. Yang et al. Hilda: A high-level language for data-driven
web applications. In ICDE, 2006.

APPENDIX
A. ADDITIONAL FIGURES

For completeness, we include the Bloom source code for two of
the modules discussed in Section 6: the protocol used to commu-
nicate between shopping cart clients and servers (Figure 9), and a
simple shopping cart client implementation (Figure 10).

1 module CartProtocol
2 state do
3 channel :action_msg,
4 [:@server, :client, :session, :reqid] => [:item, :action]
5 channel :checkout_msg,
6 [:@server, :client, :session, :reqid]
7 channel :response_msg,
8 [:@client, :server, :session] => [:items]
9 end
10 end

Figure 9: Shopping cart network protocol.

1 module CartClient
2 include CartProtocol
3 include CartClientProtocol

5 bloom :client do
6 action_msg <~ client_action do |a|
7 [a.server, a.client, a.session, a.reqid, a.item, a.action]
8 end
9 checkout_msg <~ client_checkout do |a|
10 [a.server, a.client, a.session, a.reqid]
11 end
12 client_response <= response_msg
13 end
14 end

Figure 10: Implementation of a shopping cart client.

