
I Do Declare: Consensus in a Logic Language∗

Peter Alvaro Tyson Condie Neil Conway
Joseph M. Hellerstein Russell Sears

{palvaro,tcondie,nrc,hellerstein,sears}@cs.berkeley.edu
UC Berkeley

ABSTRACT
The Paxos consensus protocol can be specified concisely,
but is notoriously difficult to implement in practice. We
recount our experience building Paxos in Overlog, a dis-
tributed declarative programming language. We found that
the Paxos algorithm is easily translated to declarative logic,
in large part because the primitives used in consensus proto-
col specifications map directly to simple Overlog constructs
such as aggregation and selection. We discuss the program-
ming idioms that appear frequently in our implementation,
and the applicability of declarative programming to related
application domains.

1. INTRODUCTION
Consensus protocols are a common building block for fault-

tolerant distributed systems [2]. Paxos is a widely-used con-
sensus protocol, first described by Lamport [6, 7]. While
Paxos is conceptually simple, practical implementations are
difficult to achieve, and typically require thousands of lines
of carefully written code [1, 4, 9].

Much of this implementation difficulty arises because high-
level protocol specifications must be translated into low-level
imperative code, yielding a significant increase in program
size and complexity. In practical implementations of Paxos,
the simplicity of the consensus algorithm is obscured by com-
mon but often tricky details such as event loops, timer in-
terrupts, explicit concurrency, and the serialization and per-
sistence of data structures.

By contrast, consensus protocols such as two-phase com-
mit and Paxos are specified in the literature at a high level,
in terms of messages, invariants, and state machine transi-
tions. Overlog supports each of these concepts directly. By
using a declarative language to implement consensus pro-

∗Jim Gray observed about the two-phase commit protocol:
“It is very similar to the wedding ceremony in which the
minister asks ‘Do you?’ and the participants say ‘I do’ (or
‘No way!’) and then the minister says ‘I now pronounce
you,’ or ‘The deal is off.”’ [3]

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NetDB ’09 Big Sky, Montana USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

tocols, we hoped to achieve a more concise implementation
that is conceptually closer to the original protocol specifi-
cation. We discuss our Paxos implementation below, and
describe how we mapped concepts from the Paxos literature
into executable Overlog code.1 We reflect on the design
patterns that we discovered while building this classical dis-
tributed service in a declarative language. The process of
identifying these patterns helped us better understand why
a declarative networking language is well-suited to program-
ming distributed systems. It has also clarified our thinking
about the more general challenge of designing a language for
distributed computing.

Earlier literature described the modular decomposition of
the Paxos protocol in terms of Timed I/O Automata [12].
Our approach differs in its grounding in database and logic
languages rather than explicit representations of state ma-
chines, and in its aim to produce executable code rather
than to model abstract systems. Szekely and Torres imple-
mented the Synod protocol (the kernel of Paxos) in Over-
log [14]. However, that work did not address important de-
tails such as Multipaxos, log replication, reconciliation, and
leader election. Here, we describe a complete Paxos imple-
mentation that addresses these issues.

1.1 Overlog
Overlog is a logic language based on Datalog. Datalog

programs consist of rules that take the form:

head(A, C) :- clause1(A, B), clause2(B, C);

where head, clause1, and clause2 are relations, “:-” de-
notes implication (⇐) and “,” denotes conjunction. A rule
may have any number of clauses, but only a single head.
Variables are denoted by identifiers that begin with an up-
percase letter, or by the symbol “_”, which indicates that
the value of the variable will not be used in the rule. The
example rule ensures that the head relation contains a tu-
ple {A, C} for each tuple {A, B} in clause1 and {B, C} in
clause2 where the tuples have the same value for B. It does
so by computing the join of clause1 and clause2 on B, and
projecting A and C. A Datalog program begins with some
base tuples, and derives new tuples by evaluating rules in
a bottom-up fashion (substituting tuples in the clause re-
lations to derive new tuples in the head relations) until no
more derivations can be made. Such a computation is called
a fixpoint. A set of rules essentially expresses the constraint

1The Overlog source code for the Paxos implementation
we describe in this paper can be found at http://db.cs.
berkeley.edu/netdb-09/.

http://db.cs.berkeley.edu/netdb-09/
http://db.cs.berkeley.edu/netdb-09/

/* Count number of peers */
peer_cnt(Coordinator, count<Peer>) :-

peers(Coordinator, Peer);

/* Count number of "yes" votes */
yes_cnt(Coordinator, TxnId, count<Peer>) :-

vote(Coordinator, TxnId, Peer, Vote),
Vote == "yes";

/* Prepare => Commit if unanimous */
transaction(Coordinator, TxnId, "commit") :-

peer_cnt(Coordinator, NumPeers),
yes_cnt(Coordinator, TxnId, NumYes),
transaction(Coordinator, TxnId, State),
NumPeers == NumYes, State == "prepare";

/* Prepare => Abort if any "no" votes */
transaction(Coordinator, TxnId, "abort") :-

vote(Coordinator, TxnId, _, Vote),
transaction(Coordinator, TxnId, State),
Vote == "no", State == "prepare";

/* All peers know transaction state */
transaction(@Peer, TxnId, State) :-

peers(@Coordinator, Peer),
transaction(@Coordinator, TxnId, State);

Figure 1: 2PC coordinator protocol in Overlog. The
DDL for transaction (not shown) specifies that the
first two columns are a primary key.

that base facts and their transitive consequences will always
be consistent at fixpoint.

Overlog computes a new fixpoint whenever new tuples ar-
rive at a node. Overlog programs accept input from network
events, timers, and native methods, each of which may pro-
duce new tuples. Because evaluation of an Overlog program
proceeds in discrete time steps, rules may be interpreted as
invariants over state: the consistency of the rule specifica-
tions will be true at every fixpoint.

Network communication is expressed using a simple ex-
tension to the Datalog syntax:

recv_msg(@A, Payload) :-
send_msg(@B, Payload), peers(@B, A);

@ denotes the location specifier field of a relation, which indi-
cates that the associated variables A and B contain network
addresses. A tuple moves between nodes if the address in
its location specifier is distinct from the address of the node
that deduced the tuple.

It is often useful to compute an aggregate over a set of
tuples, typically to choose an element of the set with a par-
ticular property (e.g. min, max) or to compute a summary
statistic over the set (e.g. count, sum). For example:

min_msg(min<SeqNum>) :-
queued_msgs(SeqNum, _);

defines an aggregate relation that contains the smallest se-
quence number among the queued messages, and

next_msg(Payload) :-
queued_msgs(SeqNum, Payload),
min_msg(SeqNum);

states that the content of next_msg is the payload of the
queued message with the smallest sequence number. This
pair of rules is equivalent to the SQL statement:

/* Declare a timer that fires once per second */
timer(ticker, 1000ms);

/* Start counter when TxnId is in "prepare" state */
tick(Coordinator, TxnId, Count) :-
transaction(Coordinator, TxnId, State),
State == "prepare",
Count := 0;

/* Increment counter every second */
tick(Coordinator, TxnId, NewCount) :-
ticker(),
tick(Coordinator, TxnId, Count),
NewCount := Count + 1;

/* If not committed after 10 sec, abort TxnId */
transaction(Coordinator, TxnId, "abort") :-
tick(Coordinator, TxnId, Count),
transaction(Coordinator, TxnId, State),
Count > 10, State == "prepare";

Figure 2: Timeout-based abort. The first two
columns of tick are a primary key.

SELECT payload FROM queued_msgs
WHERE seqnum =

(SELECT min(seqnum) FROM queued_msgs);

We encountered this pattern of selection over aggregation
frequently when implementing consensus protocols.

Finally, Overlog allows special timer relations to be de-
fined. The Overlog runtime inserts a tuple into each timer
relation at a user-defined period, and the predicate holds
only at these intervals. Thus, joining against a timer rela-
tion allows for periodic evaluation of a rule.

2. TWO-PHASE COMMIT
Before tackling Paxos, we used Overlog to build two-phase

commit (2PC), a simple consensus protocol that decides on
a series of Boolean values (“commit” or “abort”). Unlike
Paxos, 2PC does not attempt to make progress in the face
of node failures.

Both Paxos and 2PC are based on rounds of messaging
and counting. In 2PC, the coordinator node communicates
the state of a transaction to the peer nodes. When the
transaction state transitions to “prepare” at a peer node, the
peer responds with a “yes” or “no” vote. The coordinator
counts these responses; if all peers respond “yes” then the
transaction commits. Otherwise it aborts. In terms of the
Overlog primitives described above, this is just messaging,
followed by a count aggregate, and a selection for the string
“no” in the peers’ responses.

The mechanism that implements this protocol follows di-
rectly from the specification (Figure 1). The peer_cnt table
contains the coordinator address and the number of peers.
When vote messages arrive, the second and fourth rules are
considered. If the fourth rule is satisfied (with a single “no”
vote), the transaction state is updated to “abort”; otherwise,
yes_cnt is incremented to reflect another positive vote for
this transaction. If yes_cnt equals peer_cnt, the vote is
unanimous and the transaction moves to the“commit”state.
The fifth rule communicates changes to transaction state to
every peer node.

A practical 2PC implementation must address two addi-
tional details: timeouts and persistence. Timeouts allow the
coordinator to return an error if the peers take too long to

promise(@Master, View, OldView, OldUpdate, Agent) :-
prepare(@Agent, View, Update, Master),
prev_vote(@Agent, OldView, OldUpdate),
View >= OldView;

Figure 3: An agent sends a constrained promise if it
has voted for an update in a previous view.

respond. This is straightforward to implement using timer
relations (Figure 2). Our Overlog implementation uses Sta-
sis [13] to provide persistence on a per-table basis; depending
on which variant of two-phase commit is in use (Presumed
Commit, Presumed Abort, etc.), prepare, commit or abort
messages should be persisted [10].

In short, the 2PC protocol is naturally specified in terms
of aggregation, selection, messaging, timers, and persistence.
Focusing on these details led to an implementation whose
size and complexity resemble the original pseudocode spec-
ification.

2.1 Discussion
As we employed the primitives of messaging, timers and

aggregation to implement 2PC, we found ourselves reasoning
in terms of higher-level constructs that were more appropri-
ate to the domain. We call these higher-level constructs
“idioms”, and denote them with italics.

Multicast, a frequently occurring pattern in consensus pro-
tocols, can be implemented by composing the messaging
primitive described in Section 1.1 with a join against a re-
lation containing the membership list. The last rule in Fig-
ure 1 implements a multicast.

The tick relation introduced in Figure 2 implements a se-
quence, a single-row relation whose attribute values change
over time. A sequence is defined by a base rule that ini-
tializes the counter attribute of interest, and an inductive
rule that increments this attribute. Combining this pattern
with timer relations allows an Overlog program to count the
number of clock ticks, and therefore the number of seconds,
that have elapsed since some event. This is the basis of our
timeout mechanism (Figure 2).

A coordinator and a set of peers can participate in a
roll call to discover which peers are alive by combining a
coordinator-side multicast with a peer-side unicast response.
A count aggregate over a table containing network messages
implements a barrier : the partial count of rows in the table
increases with each received message, and synchronization is
achieved when the count is high enough. A round of voting
is a roll call with a selection at the peer (which vote to cast,
probably implemented as selection over aggregation) and a
barrier at the coordinator. The first three rules listed in
Figure 1 are an example of the voting idiom.

Even with a simple protocol like 2PC, a variety of common
distributed design patterns emerge quite naturally from the
high-level Overlog specification. We now turn to Paxos, a
more complicated protocol, to see if these patterns remain
sufficient.

3. PAXOS
Like 2PC, Paxos uses rounds of voting between a leader

and a set of participating agents to decide on an update.
Unlike 2PC, these roles are not fixed, but may change as a
result of failures: this is central to Paxos’ ability to make for-
ward progress in the face of failures, even of the leader. We

agent_cnt(Master, count<Agent>) :-
parliament(Master, Agent);

promise_cnt(Master, View, count<Agent>) :-
promise(Master, View, Agent, _);

quorum(Master, View) :-
agent_cnt(Master, NumAgents),
promise_cnt(Master, View, NumVotes),
NumVotes > (NumAgents / 2);

Figure 4: We have quorum if we have collected
promises from more than half of the agents.

began by implementing the Synod protocol, which reaches
consensus on a single update, and then extended it to make
an unbounded series of consensus decisions (“Multipaxos”).
In this section, we describe our Paxos implementation in
terms of the idioms we identified for 2PC, and detail addi-
tional constructs that we found necessary.

3.1 Prepare Phase
Paxos is bootstrapped by the selection of a leader and an

accompanying view number: this is called a view change.
To initiate a view change, a would-be leader multicasts a
prepare message to all agents; this message includes a se-
quence number that is globally unique and monotonically
increasing.

The Paxos protocol dictates that when an agent receives
a prepare message, if it has already voted for a lower view
number, it must send a constrained promise message con-
taining the update associated with its previous vote. Oth-
erwise, it must send an unconstrained promise message, in-
dicating that it is willing to pass any update the leader pro-
poses. This invariant couples requests with history, and is
implemented with a query that joins the prepare stream
with the local prev_vote relation (Figure 3). Finally, the
prospective leader performs a count aggregate over the set
of promise messages; if it has received responses from a ma-
jority of agents then the new view has quorum (Figure 4).
In sum, the prepare phase employs the idioms of sequences,
multicast and barriers.

3.2 Voting Phase
Once leadership has been established through this view

change, the new leader performs a query to see if any re-
sponses constrain the update. If so, the leader chooses an up-
date from one of the constraining responses (by convention,
it uses a max aggregate over the view numbers in the promise
messages). In the absence of constraining responses, it is free
to choose any pending update.

The remainder of the voting phase is a generalization of
2PC. The leader multicasts a vote message, containing the
current view number and the chosen update, to all agents
in the view. Each agent joins this message against a local
relation containing the agent’s current view number. If the
two agree, it responds with an accept message. An update is
committed once it has been accepted by a quorum of agents;
when the leader detects this, it responds to the client who
initiated the update. The second phase of Lamport’s origi-
nal Paxos is a straightforward composition of multicast and
barriers.

top_of_queue(Agent, min<Id>) :-
stored_update_request(Agent, _, _, Id);

/* Select the enqueued update with the lowest Id */
begin_prepare(Agent, Update) :-

stored_update_request(Agent, Update, _, Id),
top_of_queue(Agent, Id);

/* Cleanup passed updates, causing top_of_queue
to be refreshed */

delete
stored_update_request(Agent, Update, From, Id) :-

stored_update_request(Agent, Update, From, Id),
update_passed(Agent, _, _, Update, Id);

Figure 5: Choice and Atomic Dequeue.

3.3 Multipaxos
Multipaxos extends the algorithm described above to pass

an ordered sequence of updates, and requires the introduc-
tion of additional state to capture the update history. A
practical implementation performs the prepare phase once,
and assuming a stable leader, carries out many instances of
the voting phase.

Accommodating the notion of instances is a straightfor-
ward matter of schema modification. A prepare message
now includes an instance number indicating the candidate
position of the update in the globally ordered log. Each
agent records the current instance number, and promise and
accept message transmission is further constrained by join-
ing against this relation: an agent only votes for a proposed
update if its sequence number agrees with the current local
high-water mark.

3.4 Leader Election
Leader election protocols choose Multipaxos leaders, typ-

ically in response to leader failure. Detection of leader fail-
ure is usually implemented with timeouts: if no progress has
been made for a certain period of time, the current leader is
presumed to be down and a new leader is chosen. We imple-
mented the leader election protocol of Kirsch and Amir [4] in
19 Overlog rules (the original specification required 31 lines
of pseudocode). Our implementation was based on aggrega-
tion, multicast, sequences and timeouts, and left the core of
our Multipaxos implementation unchanged.

However, this module is both the longest and most compli-
cated component of the system. On reflection, our code re-
sembled a superficial port of Kirsch and Amir’s pseudocode,
rather than a clean specification of invariants and transi-
tions. In part, this is because leader election references a
physical clock (to implement timeouts), unlike the rest of
Paxos. The resulting Overlog code was overly mechanistic,
consisting of a hodgepodge of timers, sequences, and back-
off logic. We return to the difficulties of encoding liveness
properties in Section 4.

3.5 Discussion
Most of the logic of the basic Paxos algorithm is cap-

tured by combining voting with a sequence that allows us
to distinguish new from expired views. Hence the idioms we
described in our treatment of 2PC were nearly sufficient to
express this significantly more complicated consensus proto-
col. As we reflected on our implementation, two new idioms
emerged.

Using an exemplary aggregate function like min in combi-

Rule Pattern Idiom Prepare Propose Election

All 13 13 19

Messages
Multicast 1 2 2
Other 1 1 0

State Update
Sequence 2 2 3
GC 1 3 2
Other 0 1 6

Aggregation
Barrier 1 1 1
Choice 2 1 0
Other 5 2 3

Timer Timeout 0 0 2

Figure 7: The usage of Overlog primitives and id-
ioms in our Paxos implementation.

nation with selection implements a choice construct that se-
lects a particular tuple from a set. In Paxos, this construct is
necessary for the leader’s choice of a constrained update dur-
ing the prepare phase. Combining the choice pattern with
a conditional delete rule against the base relation allows us
to express an atomic dequeue operation, which is useful for
implementing data structures such as FIFOs, stacks, and
priority queues. We found this construct useful as a flow
control mechanism, to ensure that at most one tuple enters
the prepare phase dataflow at a time (Figure 5).

Figure 6 illustrates the composition of the distributed pro-
gramming idioms we encountered while implementing 2PC
and Paxos. To avoid clutter, not every connection is drawn;
for example, selection and join occur in nearly every idiom.
Instead, we draw connections to emphasize interesting rela-
tionships: join combines with messaging to implement mul-
ticast, and selection and aggregation combine to implement
choice. Unanimity, the critical safety property of 2PC, is
enforced via a vote construct, as is the quorum constraint
in both phases of Paxos. The safety of Paxos also relies on
the invariant that an update accepted by any agent must be
accepted by all: this is maintained by the choice of a con-
strained update in the prepare phase. Figure 7 shows the
breakdown of our Paxos implementation in terms of Over-
log primitives and higher-level idioms. Idioms like multicast,
barriers and sequences occur ubiquitously, and aggregation
is the most common rule pattern in all modules. “GC” de-
notes garbage collection rules that explicitly delete tuples
that are no longer needed. As we would expect, timer logic
is relegated to the time-aware leader election module.

4. SAFETY AND LIVENESS
The correctness of a distributed system can be described

in terms of its safety and liveness properties [11]. Infor-
mally, a safety property asserts that “something bad never
happens”, while a liveness property states that “something
good must eventually happen” [5]. In other words, safety
properties are invariants that ensure correctness of system
state. Liveness properties ensure that forward progress is
always made, and are usually enforced using timeouts.

Overlog allows programmers to implement a distributed
system as a set of invariants, which is often closer to its
original specification (e.g. [6]). In the case of 2PC, the
vote counting barrier (which triggers once the agents have
unanimously voted “yes”) is both the implementation of the
protocol and an invariant that enforces safety (Figure 1).
Paxos depends on the invariants that a quorum is reached

TimersMessaging Aggregation
State

Update and
Deletion

Join Selection

Multicast Barriers and Choice

Roll Call

Voting

Sequences

Timeouts
Dequeue

and
Semaphores

Datalog Overlog

Recursion

2PC
Coordinator Paxos

Safety

Liveness

Protocols

Higher-level
Idioms

Primitives

Figure 6: Distributed Logic Programming Idioms.

when more than half the agents have responded, and that all
agents must accept an update accepted by any agent. These
safety properties are encoded as a barrier by the last rule in
Figure 4, and as a choice by the rule in Figure 3.

By contrast, liveness properties are not maintained by in-
variants that must hold at every timestep, but rather by
restrictions that certain properties (for example, a pending
request) hold only for a bounded amount of time. This re-
quires considering infinite executions [11], which is not pos-
sible in Overlog. Instead, we are forced to use strategies
similar to those employed in imperative languages, relying
on timing to conservatively detect potentially infinite exe-
cutions and take corrective measures.

Overlog’s ability to reference real time via timers allows
us to express these timing assumptions in protocols that
can achieve liveness properties. Figure 2’s timeout-based
abort mechanism enforces a 2PC liveness invariant through
sequences and reference to physical time. Paxos’ liveness
is achieved with a leader election protocol, as discussed in
Section 3.4.

We found it much more difficult to reason about liveness
properties in Overlog than to reason about safety properties.
For example, convincing ourselves that a Paxos group will
only accept an update if a majority of nodes have agreed
is a simple matter of reading the barrier rule that defines
a quorum, and observing that the accept rules are only
reachable from a quorum. On the other hand, convincing
ourselves that an update, once proposed, will eventually be
accepted involves reasoning about timeout, retries, and po-
tential livelock cycles between dueling proposers. This is
less a criticism of the language than an observation about
the difficulty of proving liveness properties in general. Al-
though Overlog primitives such as timers and messaging
allow the succinct expression of mechanisms for achieving
liveness, Overlog lacks the ability to directly specify liveness
properties as such. This results in a disconnect between ab-
stract safety rules and lower-level timeout and retry logic.
Hence, our Paxos implementation encodes safety properties

declaratively, and liveness properties mechanistically.

5. CONCLUSION
When we set out to implement Paxos, our intent was to

experiment with the generality of what was originally en-
visioned as a declarative networking language. As the P2
authors discovered for network protocols [8], we found that
a few simple Overlog idioms cover an impressive amount of
the design space for consensus protocols. The correspon-
dence between Overlog idioms and consensus protocol spec-
ifications allowed us to directly reason about the correctness
of our implementations.

In the course of our implementation, we saw significant
reuse of higher-level constructs than those provided by Over-
log. When comparing protocols, we found ourselves speak-
ing in terms of barriers, voting, choice and sequences rather
than select, project and join.

The use of these idioms made it easier to focus on the rela-
tively small distinctions between protocol variants like 2PC,
Synod and the Multipaxos variants, such as the conditions
under which agents cast votes and when barriers may be
passed. At a conceptual level, this highlights commonalities
between these protocols that may deserve more attention; at
a constructive level, it may provide guidance for the design
of a library or domain-specific language for a larger class of
classical distributed systems protocols.

The layering of idioms that we observed raised questions
about the desired level of abstraction in future declarative
languages. What “cut” in Figure 6 is best for what class of
protocols? Is it best to provide a lower-level but general-
purpose declarative language and layer libraries on top, or
to design domain-specific declarative languages for only the
trickiest aspects of distributed systems, leaving most tasks
to other, more familiar languages? Perhaps most impor-
tantly, which approach is more likely to impact how devel-
opers build distributed systems?

Acknowledgments
We would like to thank Sara Alspaugh, Dmitriy Ryaboy,
and the anonymous reviewers for their helpful comments.
This material is based upon work supported by the National
Science Foundation under Grant Nos. 0722077 and 0713661,
the University of California MICRO program, and gifts from
Sun Microsystems, Inc. and Microsoft Corporation.

6. REFERENCES
[1] T. D. Chandra, R. Griesemer, and J. Redstone. Paxos

made live: An engineering perspective. In PODC,
pages 398–407, 2007.

[2] M. J. Fischer. The consensus problem in unreliable
distributed systems (A brief survey). In Proceedings of
the 1983 International FCT-Conference on
Fundamentals of Computation Theory, pages 127–140,
1983.

[3] J. Gray. The transaction concept: virtues and
limitations (invited paper). In Proceedings of the
Seventh International Conference on Very Large Data
Bases, pages 144–154, 1981.

[4] J. Kirsch and Y. Amir. Paxos for system builders.
Technical Report CNDS-2008-2, Johns Hopkins
University, 2008.

[5] L. Lamport. “Sometime” is sometimes “not never”: on
the temporal logic of programs. In Proceedings of the
7th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, pages 174–185,
1980.

[6] L. Lamport. The part-time parliament. ACM Trans.
Comput. Syst., 16(2):133–169, 1998.

[7] L. Lamport. Paxos made simple. SIGACT News,
32(4):51–58, December 2001.

[8] B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis,
T. Roscoe, and I. Stoica. Implementing declarative
overlays. In SOSP, 2005.

[9] D. Mazières. Paxos made practical. http:
//www.scs.stanford.edu/~dm/home/papers/paxos.pdf,
January 2007.

[10] C. Mohan, B. Lindsay, and R. Obermarck.
Transaction management in the R* distributed
database management system. ACM TODS,
11(4):378–396, 1986.

[11] S. Mullender, editor. Distributed Systems.
Addison-Wesley, second edition, 1993.

[12] R. D. Prisco, B. W. Lampson, and N. A. Lynch.
Revisiting the paxos algorithm. In Proceedings of the
11th International Workshop on Distributed
Algorithms, pages 111–125, 1997.

[13] R. Sears and E. Brewer. Stasis: Flexible transactional
storage. In OSDI, pages 29–44, 2006.

[14] B. Szekely and E. Torres. A Paxon evaluation of P2.
http://klinewoods.com/papers/p2paxos.pdf.

http://www.scs.stanford.edu/~dm/home/papers/paxos.pdf
http://www.scs.stanford.edu/~dm/home/papers/paxos.pdf
http://klinewoods.com/papers/p2paxos.pdf

	Introduction
	Overlog

	Two-phase commit
	Discussion

	Paxos
	Prepare Phase
	Voting Phase
	Multipaxos
	Leader Election
	Discussion

	Safety and Liveness
	Conclusion
	References

