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Abstract

The current generation of data stream management systems (DSMS)
do not provide transactions. This is unfortunate: in this paper, we argue
that transactions are a relevant concept for data stream processing, be-
cause they simplify the development of correct, reliable applications. As a
first step toward a complete transaction model for stream processors, we
present several situations in which existing DSMS systems are inadequate,
and describe how transaction-like behavior provides a clean solution. We
conclude by discussing what these examples suggest about the proper role
for transactions in a DSMS.

1 Introduction

In database systems, correctness criteria are usually defined in terms of trans-
action serializability: database operations are grouped into atomic transac-
tions, and the system guarantees that an application’s transactions will be ex-
ecuted in a manner that is equivalent to some serial ordering. Combined with
the other ACID properties, transactions simplify the development of database
applications[GR93].

Unfortunately, there is no equivalent set of concepts for the current gen-
eration of data stream systems. DSMS do not generally provide transactions,
and typically only make informal guarantees of correctness. In fact, it is not
even clear how the concept of a transaction ought to be applied to data stream
processors: because queries are typically read-only and specified in a declarative
query language, the evaluation of a continuous query usually does not interfere
with other queries. The DSMS has few constraints on the order in which it
evaluates queries, and the typical guarantees of transaction serializability made
by database isolation models are not relevant.

Nevertheless, we believe that the transaction concept can be usefully applied
to data stream systems. Rather than focusing on serializability, transactions in
a DSMS are data-oriented : they provide guarantees about the movement of data
into, within, and out of the DSMS. We associate transaction boundaries in a
database with window boundaries in a data stream: a data stream’s window is
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proposed as the basic unit for data flow in the DSMS. For example, windows are
used as the unit of isolation for continuous queries, and the unit of durability for
archived streams, and the output streams of the continuous queries themselves.
In this paper, we describe several situations in which this “transaction-like”
behavior would improve the behavior of a DSMS, and then sketch an architecture
for a transaction-oriented DSMS.

The remainder of this paper is organized as follows. We begin by introduc-
ing background material, and discussing relevant prior work. In Section 2, we
summarize the concept of a transaction, and argue for why transactions have
proven to be a useful way to structure database applications. In Section 3,
we describe the components of a typical data stream management system, and
highlight some of the differences between data stream and database systems
that are particularly relevant to transactions. Section 4 contains motivating
examples of how transactional behavior would be useful in a DSMS for isola-
tion (4.1), durability (4.2), and crash recovery (4.3). In Section 5, we analyze
what these examples have in common, and discuss what they suggest about a
potential architecture for a transaction-oriented DSMS.
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2 Transactions

A transaction is a sequence of related database operations that are treated as an
atomic unit. [Gra81] traces the transaction concept to contract law: two or more
parties negotiate until they have agreed upon a set of state transformations.
Once an agreement has been reached, the contract is finalized by a signature or
another symbol of joint commitment. It is only when this committal has been
made that the changes described by the transaction are binding.

In this section, we begin by defining the basic properties of the transac-
tion concept (Section 2.1). We then discuss extensions of the basic transaction
concept to account for distributed systems and reactive applications (Section
2.2). We summarize the traditional DBMS approach to transaction isolation in
Section 2.3), and other related prior work (Section 2.4).

2.1 The ACID Properties

Database systems guarantee that transactions possess the so-called “ACID”
properties[GR93]:

atomic: Either all the database operations in a transaction are completed, or
none of them are.

consistent: A transaction must not leave the database in an inconsistent state.
If each transaction preserves the consistency of the database when run in
isolation, the database system ensures that the database remains consis-
tent when transaction execution is interleaved.

isolated: A transaction is isolated from the effects of concurrent transactions.
In the strictest interpretation, isolation requires that the system provide
the illusion that each transaction is executed serially. In some systems this
requirement is relaxed, and the system merely ensures that modifications
made by other transactions are made visible to a transaction in a well-
defined way.

durable: Once a transaction has been committed, the system guarantees that
its effects are persistent, even in the face of a subsequent system crash.

By providing ACID semantics, database systems simplify client applications.
For example, providing atomicity lifts the burden of considering intermediate
states from application developers: the developer need only ensure that the
transaction leaves the database in a consistent state if it is run to completion.
Isolation simplifies reasoning about the way in which a transaction can interact
with concurrent database operations. Similarly, if the system guarantees that
all committed transaction are durable, the application developer typically does
not need to concern themselves with recovering database state in the event of a
system crash.
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Another benefit of transactions is that they allow applications to be more
easily composed from collections of related operations[HMPJH05]. This encour-
ages modularity in design: each transaction can be developed and verified in
relative isolation, and then combined with other transactions in a well-defined
way.

2.2 Extended Transaction Models

The canonical use case for transactions involves moving money between cus-
tomer accounts at a bank[GR93]. Transactions provide a natural way to struc-
ture applications in order to ensure that no money is lost or mistakenly allocated
to more than one account. Many simple transaction-processing applications are
conceptually similar to this example: they involve transactions that last for a
relatively short time (short-lived), and consist of simple state transformations
that modify a single database (centralized).

Certain applications require a more sophisticated transaction model. For
example, consider a trip planning application that automates the process of
booking a complicated journey[GR93]. Planning a trip requires interacting with
a wide variety of data stores, including databases associated with airlines, car
rental agencies, hotels, and travel agents. These systems may be geographically
distributed, and likely do not belong to the same organizational or adminis-
trative domain. Therefore, the trip planning application would like to execute
a distributed transaction that involves modifications to a collection of hetero-
geneous data stores. Each such modification should be transactional, so the
operation is a whole can be modeled as a group of related sub-transactions.
Decomposing the trip planning process into a set of related sub-transactions
simplifies control flow and error handling. Other applications ill-suited to the
simple transaction model include “open-ended” collaborative applications like
CAD and software engineering[PK88], and bulk update operations[GR93].

Numerous “extended” transaction models have been proposed, including
savepoints, nested transactions[Mos85], multi-level transactions[BSW88], split
transactions[PK88], and sagas[GMS87]. The details of these various models are
beyond the scope of this paper, but they all attempt to extend the transaction
model to handle different kinds of long-running, distributed operations with
complex internal control flow.

When the transaction model is extended in this way, maintaining the strict
ACID properties is often challenging[GR93]. For example, providing the illusion
of atomicity and serial execution is inherently more difficult when transactions
are long-running and involve multiple computer systems. Transactions are often
implemented using locks; as the duration of transactions increases, the chance
of deadlock also rises[Gra81]. Broadly speaking, the situation can be improved
by relaxing the ACID guarantees, or by dividing a long-running transaction
into smaller atomic units, and then making guarantees about the relationships
between those sub-units.
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2.3 Isolation Models

An isolation model defines the possible behaviors that a transaction may wit-
ness during its execution. Since one database transaction can directly interfere
with another, isolation models typically focus on defining the ways in which the
system may interleave the execution of concurrent transactions. The standard
approach is serializability: the database system is free to execute transactions
in any order, provided that it chooses an execution order that is equivalent to
some serial ordering of transactions[GR93]. Because implementing true serializ-
ability may be expensive and can result in aborting unserializable transactions,
several more relaxed consistency criteria have been proposed (e.g. [GLPT76]).
This allows the application developer to select the appropriate tradeoff between
consistency and performance.

Isolation models are usually formalized in terms of constraints upon legal
transaction schedules (execution histories): the model specifies the kinds of
transaction schedules (execution interleavings) that do not violate the system’s
consistency constraints. A formal, mathematical isolation model forms the basis
for the DBMS’s concurrency control strategy[GR93].

Each of the extended transaction models discussed in Section 2.2 typically
includes an isolation model that specifies the constraints that a correct im-
plementation of the transaction model must satisfy. ACTA is an attempt to
generalize these isolation models into a formal framework for specifying and
reasoning about extended transaction models[CR94, BDG+94].

2.4 Prior Work

Transactions have long been a component of information processing systems.
[Gra81] provides a summary of the transaction concept and some of its com-
mon applications. The first transaction isolation model was also proposed by
Gray[GLPT76], under the name “degrees of consistency.” Gray’s original pro-
posal was implementation-dependent, in the sense that it required a lock-based
implementation of concurrency control. Nevertheless, Gray’s work on degrees of
consistency was used as the basis for the “isolation level” concept introduced in
the SQL-92 standard, which was intended to be implementation-independent.
Subsequent work observed that the definition of isolation levels in SQL-92 speci-
fied ambiguous behavior in some circumstances[BBG+95]. [ALO00] proposed an
isolation model that was both unambiguous and implementation-independent.

The transaction concept has also been successfully applied outside the do-
main of databases and transaction processing. [HM93] introduced transactional
memory as a way of constructing concurrent programs without using locks or
traditional lock-free techniques. Although the initial formulation depended on
hardware support for transactional memory, the idea was later generalized to
software transactional memory (STM)[ST95]. STM has been the subject of
much subsequent work in the programming language community. For exam-
ple, [HMPJH05] presents an elegant approach to using software transactional
memory to constructing concurrent Haskell programs.
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The idea of implementing long-lived transactions as a group of smaller,
atomic transaction-like units is also not new. [GMS87] proposes sagas, which are
long-lived database operations that are composed of one or more transactions.
Each of these subsidiary transactions is allowed to commit or abort indepen-
dently. The saga as a whole can commit if each of its subsidiary transactions has
committed successfully; otherwise, the entire saga must be aborted. Aborting a
saga requires reversing the effects of any of its component transactions that have
committed. This is done through the use of “compensating transactions” that
restore the logical state of the database to how it was before the transaction
was executed.
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3 Data Stream Management Systems

Database management systems have been successfully applied in many ap-
plications and to many different domains. Classical DBMS systems use a
“store and query” model: data is stored permanently in the database, and
queries are evaluated against the database’s current state and then discarded.
While this architecture will continue to be useful, it has recently been rec-
ognized that this model is inappropriate for an emerging class of data man-
agement problems, in which applications want to perform real-time analysis
over a set of infinite, continuous data streams. Data Stream Management Sys-
tems (DSMS) have been proposed to meet the challenges raised by these new
applications[GÖ03]. Typical applications from this class include include net-
work traffic monitoring[CJSS03, PGB+04], real-time financial analysis[LS03],
and sensor networks[BGS01]. In this section, we summarize the major compo-
nents of a DSMS, and highlight some of the differences between databases and
data streams.

A Data Stream Management System consists of the following components:

1. data streams, which represent the input to the system (Section 3.1)

2. continuous queries, which express conditions of interest over one or more
data streams (Section 3.2)

3. query processors, which accept input from a set of data streams, evaluate
a set of continuous queries, and produce a set of output data streams
(Section 3.3)

4. clients, which submit continuous queries and process query results (Section
3.4)

The architecture of a typical DSMS is illustrated in Figure 1. In Sections 3.1–3.4,
we describe each component of a DSMS in more detail. We highlight notable
differences between database and data streams systems, and summarize those
differences in Section 3.5.

3.1 Data Streams

A data stream is an infinite bag (multiset) of tuples, including a timestamp
attribute[ABW03]. The timestamp attribute specifies the position of the tuple
within the data stream. Note that in contrast to traditional relational systems,
streams are inherently ordered.

There are two kinds of streams: base streams and derived streams [ABW03].
Base streams represent the external input to a data stream system, and are typ-
ically derived from a continuous data source in the physical world (e.g. network
traffic, a sensor, or a “ticker”describing the changes in a financial market). The
rate of arrival of a stream is typically unpredictable, and can often be “bursty”:
the stream’s peak arrival rate far exceeds its average rate. Because stream tu-
ples typically arrive faster than they can be written to disk, the DSMS must
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Figure 1: The architecture of a typical DSMS.

usually process them as they arrive and then discard them, or archive them to
disk in the background[CCD+03].

Derived streams are intermediate streams that are produced by operators in
the stream query language. They can be used to compose multiple data streams
to simplify a complex query, in a manner analogous to how views are used in
traditional database systems.

There are two kinds of stream timestamps: explicit timestamps, which are
included in the data stream when it arrives at the DSMS, and implicit times-
tamps, which are assigned by the DSMS[SW04]. Explicit timestamps are typi-
cally derived from a physical clock, and usually describe the time at which an
event occurred in the outside world, whereas implicit timestamps can be de-
rived from a logical clock, and are typically based on the order in which tuples
arrive at the DSMS. Explicit timestamps are more relevant to many real-world
applications, but also introduce some additional complications: for example,
externally-supplied timestamps may not be unique, and the stream tuples might
arrive out-of-order[SW04]. Therefore, this paper assumes that streams are im-
plicitly timestamped, so that the timestamp attribute obeys a total order that
agrees with the arrival time of the input tuples.

Note that from the perspective of the DSMS, stream tuples do not exist until
they have been produced by a base stream. Prior to this point, the data is not
visible to the DSMS, and is therefore not subject to any correctness guarantees
that the DSMS may provide (e.g. with regard to durability or visibility).

3.2 Continuous Queries

A continuous query is a query that accesses one or more data streams, and
produces an unbounded stream of results. For the sake of comparison, we use the
term snapshot query to refer to the “one-time” queries supported by traditional
database systems.

In a DBMS, queries are typically expressed in a declarative query language,
and (logically) applied to the entire database: the predicates in the query indi-
cate which tuples satisfy the query. This approach cannot be directly applied
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to data stream systems: because streams are infinite, a traditional relational
operator would never terminate when applied to a stream. Clearly, a different
query language is needed to work with data streams.

There are several approaches to streaming query languages, including object-
based languages[BGS01], graphical data-flow languages[CCC+02], and relation-
based languages[LS03, CCD+03]. In this paper, we focus on relation-based
query languages that are similar in principle to the Continuous Query Language
(CQL) defined by the Stanford STREAM project[ABW03].

CQL embodies a conservative approach to language design. Relational query
languages are well understood, and have proven to provide a sufficient set of
constructs for manipulating relational data. CQL takes an existing relational
query language (such as SQL) and extends it to handle streams, allowing CQL to
benefit from prior work on relational query language semantics and optimization.

CQL extends a relational query language with some new types and operators
for handling streams:

• a stream is a new type of database object, with the properties described
in Section 3.1

• stream-to-relation operators periodically produce relations from finite sub-
sets of a stream. Window operators are the primary stream-to-relation
constructs, and are discussed further in Section 3.2.1

• relation-to-stream operators produce data streams from the content of a
relation. As a relation’s contents change over time, those changes can be
emitted as a data stream. CQL defines three stream-to-relation operators:

1. The rstream of relation R at time t consists of the entire content
of R at t.

2. The istream of a relation R at time t is defined as Rt −Rt−1. That
is, the istream contains all the tuples that were added to R between
time t − 1 and t.

3. The dstream of a relation R at time t is defined as Rt−1 −Rt. The
dstream is the converse to istream: it contains the tuples that
were recently removed from R.

In CQL, the result of a query is a stream, not a relation. The primary input to
the system is the set of base data streams. Intuitively, it follows that a query in
CQL is typically composed of three components: a stream-to-relation operator
that selects finite sub-sets of data from one or more data streams to process,
a set of relational operators that filter and transform this data, and finally a
relation-to-stream operator that produces an output data stream from the result
of the relational operators. Because each query is essentially a transformation
from data streams to data streams, multiple queries can be composed through
the use of derived streams.

Typically, if the query’s relational component involves grouping and aggrega-
tion, rstream is often the appropriate operator to apply to produce the output
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stream. Otherwise, istream is commonly used. Requiring the programmer
to specify an explicit stream-to-relation operator leads to verbose queries. To
allow simple queries to be expressed concisely, CQL defines a default stream-
to-relation operator for some queries[ABW03]. For the sake of clarity, example
queries in this paper will not take advantage of any syntactic defaults.

In a DBMS, a query accesses a single, consistent snapshot of the database.
It seems unlikely that the same will be true of continuous queries. Requiring a
continuous query to use a single, static snapshot of the database would be both
expensive, because of the need for long-lived locks or transactions, and also
undesirable, since most queries will want to incorporate updates to database
contents at some point during their lifetimes. The problem of isolation and
continuous queries is further explored in Section 4.1.

3.2.1 Windows

A query is only interested in a finite subset of a stream at any given point,
although this subset usually changes over time. Furthermore, most applications
are interested in the most recent content of a stream. These observations give
rise to the concept of a window operator, which is the prototypical stream-to-
relation operator.

In CQL, a sliding window is applied to a data stream and periodically pro-
duces a relation. The size of the window is specified by its range, and the
window’s period is specified by its slide. We use the term window boundaries
to describe the points at which a window slides. Conceptually, at every window
boundary, the DSMS produces a relation containing all the stream tuples within
the window’s range. Both the slide and range of a window can be specified in
time-based or tuple-based units. For example, Algorithm 1 computes the total
number of shares traded in the most recent 5 minutes, on a per-stock basis.
Every 5 minutes, this query produces a new set of results by computing the
query expression on the most recent 5 minutes of data in the stream.

Algorithm 1 A simple example query in CQL.

SELECT RSTREAM(t.symbol, sum(t.volume))

FROM ticker t

[ SLIDE BY ‘5 minutes’ RANGE BY ‘5 minutes’ ]

GROUP BY t.symbol;

Inspired by [KWF06], we classify a window according to its range r and slide
s as follows:

• If r ≤ s, then the window is disjoint : each stream tuple appears in at
most one window

• If r > s, then the window is overlapping

10



Stream tuples that do not fall within any windows are effectively ignored. Note
that in overlapping windows, a single stream tuple can appear in two or more
windows. Logically, each window is treated as a distinct set of tuples. In
practice, the DSMS may optimize query execution by taking advantage of the
commonalities between overlapping windows[KWF06].

The windows described above are properly known as sliding windows, since
both endpoints of the window change with time. A window in which both
endpoints are fixed is termed a fixed window, whereas a landmark window has
a single fixed endpoint[GÖ03]. We focus on sliding windows for the remainder
of this paper.

3.2.2 Mixed Joins

In a DSMS that uses a relation-oriented query language, it is natural for the
system to provide both streams and relations, and to allow a single query to
access both types of objects. In fact, this capability proves to be quite useful
in practice, since applications frequently need to lookup mostly-static reference
information that is associated with incoming stream tuples. For example, a
system accepting a stream of equity market ticker updates might need to lookup
additional information about the equities that is not present in the stream itself
(historical information about a stock, for instance). This operation can be
elegantly modeled as a join between a stream and a table, which we call a mixed
join.1 Algorithm 2 includes an example query that illustrates this concept.

Algorithm 2 An example query that uses a mixed join to compute the total
value of trades in a certain basket of “interesting” stocks every 10 minutes.

SELECT RSTREAM(s.name, sum(t.volume * t.price))

FROM stocks_of_interest s,

ticker t

[ RANGE ‘10 minutes’ SLIDE BY ‘10 minutes’ ]

WHERE s.symbol = t.symbol

GROUP BY s.name;

A mixed join consists of a stream, a relation, a window operator, and an
optional join predicate. Conceptually, the mixed join applies the window oper-
ator to the stream. Each window’s worth of tuples is joined against the relation
according to the join predicate (if any), and then emitted as the output of the
mixed join. Note that, like a window operator, a mixed join produces an infinite
sequence of finite relations, not a data stream.

This approach to implementing mixed joins is undesirable in some circum-
stances: buffering a window’s worth of results in memory before computing the

1In several cases, previous work has made casual references to this concept: for example,
[GÖ03] notes that it would be desirable for DSMS to allow joins between streams and “static
meta-data”. However, we are not aware of a previous in-depth treatment of this construct.
The name “mixed join” is due to S. Krishnamurthy.
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join might require too much memory if the window is large. In fact, in many
cases there is no need to keep an entire window’s worth of data in memory at
any time. We can take advantage of the commutativity of the join predicate and
the window operator to compute the results of a mixed join incrementally. For
each incoming stream tuple, the DSMS can immediately join the tuple against
the relation, and then subsequently apply the window operator to the resulting
join tuples. This technique can be applied to the mixed join query given in
Algorithm 2 to avoid buffering stream tuples in memory. We expect that most
practical data stream systems will use this approach to evaluating mixed joins.

Note that the relation operand to a mixed join does not need to be a base
relation: it may be the result of applying a query expression to one or more
base relations. Similarly, the stream operand may be either a base stream or a
derived stream. Therefore, a mixed join essentially represents a“crossover point”
between two components of a query plan: a passive subplan that produces a
relation, and an active subplan that produces a stream.

Many data stream systems also support window joins, which are joins be-
tween two or more data streams[KNV03]. Window joins are useful for correlat-
ing recent information from multiple data streams. As such, they complement
mixed joins, which are typically useful for correlating recent stream data with
historical or static information.

3.3 Stream Query Processors

A stream query processor takes a set of data streams as input, and evaluates the
continuous queries in the system to produce a set of output data streams. Data
streams are “injected” into the system by connecting to the query processor’s
input manager. The input manager makes stream tuples available to the query
executor, which then periodically makes query results available to clients.

3.3.1 Query Evaluation

The difference between stream-oriented and relation-oriented query languages is
more than superficial: data stream systems are amenable to completely different
query optimization and evaluation strategies than traditional databases.

In a DBMS, data is long-lived, but queries are transient. The DBMS re-
sponds to each new query by evaluating the query relative to the current state
of the database, returning a finite result set, and then discarding the query. In
contrast, continuous queries in a DSMS are long-lived, but data is transient.
Activity in a DSMS is usually initiated by new data (the arrival of incoming
stream tuples), rather than by the arrival of new queries. Therefore, a stream
query processor is naturally implemented by applying incoming stream tuples
to a set of continuous queries, emitting new result data stream tuples as neces-
sary, and then discarding the input stream tuples. Query execution for stream
processors is often implemented by routing stream tuples through a graph of
operators.
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A single stream processor may execute many concurrent continuous queries
over the same set of data streams, so sharing evaluation work among similar
queries is essential for good performance[CCD+03]. In fact, the long-lived nature
of most continuous queries makes them more amenable to shared processing.
However, it is worth noting that sharing the evaluation work between two queries
may have subtle implications on the snapshot of system state seen by those
queries.

In a stream query processor, most of the important state information in a
DSMS is resident in memory: in state associated with the nodes of the graph of
operators, for example. Some DSMS may not even have an attached disk, and
many stream processors will not write to disk frequently during the course of
their operation. In contrast, the important state in a database system is disk
resident. The DBMS ensures that data is persisted to stable storage, and most
database systems are content to abort in-progress transactions in the event of
a system crash. As long as the on-disk state in a database system can be made
consistent, the system can recover from crashes successfully.

3.4 Clients

In a database system, the client model is simple: clients submit queries to the
database system and then block until the results are available. Queries are
typically embedded directly in the client application, either as textual strings in
the application’s source code, or via techniques like SQL/CLI.

Relatively little attention has been paid to the role of the client in DSMS
systems, but we observe that there are fundamental differences between stream
clients and database clients:

• Continuous queries produce a stream of results, rather than a relation.
Therefore, a client typically does not (and cannot) consume the entire
output stream at once; instead, the DSMS emits an output stream of
results, which is periodically consumed by the client

• Because continuous queries can commonly last for weeks or months, it
would be awkward for client applications to remain connected to the DSMS
for the duration of query execution

• Clients are often latency-sensitive: many DSMS clients would like to be
notified of new query results as soon as possible. Therefore, requiring
clients to poll for new results is inconvenient: many applications will either
need to poll the DSMS frequently, or incur additional latency in result
processing

It follows that while a “pull”-style interface is convenient for database clients,
a “push”-style interface to query results is more appropriate for many DSMS
applications. This suggests that we should consider the DSMS to be only one
component in a sequence of systems that perform actions in response to in-
coming stream events. Rather than delivering query results directly to client

13



applications, it is often preferable to have the DSMS push results to a mid-
dleware component (such as a message queue[Gra95]), which can then make
the results available to clients as necessary. Such “message-oriented middle-
ware” (MOM) systems often provide a “publish/subscribe” interface that can
promptly notify clients when new results are available[EFGK03]. Using a MOM
system to store query results encourages loose coupling between the DSMS and
the client: the client and the query processor do not need to be online at the
same time, for example. This is a useful property in the context of long-lived,
continuous queries.

An interesting observation is that middleware systems are similar to tradi-
tional database systems in various ways, including support for transactions[Gra95].
If the data stream processor were to also provide a notion of transactions, two-
phase commit could be used to ensure that results were persisted in stable
storage (e.g. at a transactional message queue) before committing the DSMS
transaction. This would provide transactional behavior for the entire path be-
tween the stream source and the client. This architecture is described further
in Section 5.

3.5 Comparison with Database Systems

For the purposes of this paper, the most significant differences between data
streams and databases are:

• Streams are append-only, and queries on streams are read-only. Therefore,
there is no need to isolate DSMS clients from the actions of concurrent
users, unless the client also accesses relations.

• Stream are inherently ordered, unlike relations.

• While a DBMS executes transactions that consist of sequence of snapshot
queries, a DSMS executes a collection of relatively independent analysis
queries. These queries are continuous, long-lived, and typically executed
via shared processing.

• A DSMS is data-oriented, whereas a DBMS is operation-oriented : rather
than applying queries to a static collection of data, a DSMS “applies”
incoming stream tuples to update the result sets of the current set of
continuous queries.

• Most of the interesting state in a DSMS is resident in memory, not on disk.
Therefore, durability is more about checkpointing the current runtime
state of the system than it is about ensuring that the on-disk state of the
system is consistent.

3.6 Prior Work

There is an extensive literature on data streams, which we do not attempt to
summarize here. [GÖ03] is a recent survey of the field. In particular, crash
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recovery and high availability have been previously studied for data stream
systems (e.g. [SHCF03, HBR+05]), but not in a transactional setting.

Active databases are among the intellectual predecessors of stream query
processors. The HiPAC project proposed a framework for active databases that
included a “generalized transaction model for defining correctness of concurrent
execution of user transactions and triggers”.[DBB+88] HiPAC allows the execu-
tion of user transactions, triggered actions, and “checkers” that validate trigger
conditions, so a transaction model is necessary to define the ways in which
these operations can be legally interleaved. [DHL90] discusses the integration
of triggers with extended transaction models, such as those discussed in Section
2.2. Both HiPAC and the work of Dayal et al. differs from the current paper
in that prior work on active databases is still operation-oriented, rather than
data-oriented: transactions are used to provide guarantees about the concurrent
evaluation of triggers and their triggering actions.
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4 Case Studies

Now that we have introduced both transactions and data streams, we turn to
several case studies of how data stream management systems could stand to
benefit from transaction-like functionality. We consider examples that focus on
isolation, durability, and crash recovery, in Sections 4.1, 4.2, and 4.3, respec-
tively.

4.1 Isolation

A continuous query sees a snapshot of the state of the database when it be-
gins execution. In this section, we consider how a continuous query’s snapshot
should change over time. This requires defining an isolation model for continu-
ous queries.

As a concrete example of the need for such a model, we consider the problem
of isolation for mixed joins. In a system that supports both snapshot and
continuous queries, it is possible for other database clients to modify a relation
that participates in a mixed join. An isolation model is required to define the
way in which these modifications are reflected in the output of the mixed join.
In this section, we first discuss traditional approaches, and then propose window
isolation, an isolation model suitable for continuous queries.

4.1.1 Traditional Isolation Models

Traditional approaches to transaction isolation do not offer a satisfactory so-
lution. A naive approach would be to implement each continuous query as a
single transaction. The conventional transaction isolation rules would require
that a continuous query be isolated from any changes to the database that have
been made since the query began execution. Therefore, any modifications to
the relation in a mixed join never be made visible to continuous queries that
began execution before the modification took place.

Using a single transaction is clearly suboptimal for the kinds of long-running,
continuous queries that are typical in a data stream system. Most client ap-
plications would expect that modifications to base relations will eventually be
reflected in the output streams of continuous queries. In the example query
given in Algorithm 2, the set of “interesting” stocks might change periodically,
and at some subsequent point the output of the mixed join should be adjusted
accordingly.

Of course, clients can stop and restart their continuous queries in order to
receive refreshed results, but this is also unsatisfactory. Because clients in a
data stream system are often only loosely coupled to queries (Section 3.4), so
it may even be impossible for clients to restart queries on demand. The client
might also miss any query results that would have been emitted during the time
that the query is being restarted, which is unacceptable for some applications.
This approach would also be difficult to implement efficiently: in order to ensure
that a continuous query sees an immutable snapshot of each base relation, the
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query would typically need to hold a lock or similar construct on every table it
accesses for the duration of its execution.

Rather than evaluating a continuous query in a single database transaction,
another naive approach would join each new stream tuple against the “most
recent” version of the table. This solves the visibility problem: modifications
to a table will promptly be made visible to any mixed joins that involve the
table. However, this alternative is also problematic. The result of a mixed join
could be derived from multiple snapshots of the join relation, so join results
may become inconsistent. In the example query given in Algorithm 2, if a row
is removed from the table of “interesting” stocks in the midst of a window, an
incomplete sum will be included in the next window’s worth of results from the
mixed join. Similar problems occur if a row is added to the relation in the midst
of a window. In both cases, the problem is exacerbated by the fact that the
user has no way to observe that data has been silently omitted from the result
of the join.

Another problem with joining each stream tuple against the most recent
version of the join relation is that it effectively limits the choice of join algorithm
to nested loops. Using a join algorithm such as a hash join that computes a
temporary data structure from the join relation would require synchronizing the
temporary structure with the relation from which it was derived. While this is
possible, it would represent an additional headache for implementers and likely
hurt performance.

4.1.2 Window Isolation

We propose using the mixed join’s window as its “unit of visibility”. That is,
during the computation of a single window’s worth of results, the mixed join
accesses an immutable, consistent snapshot of all the relations in the system
(presumably, the same snapshot that a new transaction would see if it began
at the same instant that the window began). At each new window boundary,
a new snapshot of the system is taken, which incorporates any modifications
into the next window’s worth of results from the mixed join. We call this model
window isolation.

This provides an adequate solution for the mixed join example given in
Algorithm 2. When the set of “interesting” stocks is modified by a transaction
that successfully commits, the modification is ignored for the duration of the
current window. The next window includes only the new set of interesting
stocks. Assuming that each transaction modifying the stocks_of_interest

table ensures that it is left in a consistent state, the mixed join’s results in any
given window will be self-consistent.

Note that this approach works for both overlapping and disjoint windows.
In an overlapping window, a stream tuple can be part of two or more windows
in the same query. In this case, the two “versions” of the stream tuple will need
to be joined against two different snapshots of the join relation.
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Algorithm 3 An example of a derived stream and a continuous query in CQL.
They use differing window clauses, but access the same relation (“users”).

CREATE STREAM user_purchases AS

SELECT ISTREAM(u.name as user_name,

s.name as stock_name,

t.price, t.volume)

FROM stocks_of_interest s,

users u,

ticker t

[ RANGE ‘5 minutes’ SLIDE BY ‘5 minutes’ ]

WHERE s.symbol = t.symbol

AND s.user = u.name

AND t.purchaser = u.name;

SELECT RSTREAM(up.user_name,

sum(up.price * up.volume) + u.bank_account)

FROM users u,

user_purchases up

[ RANGE ‘1 hour’ SLIDE BY ‘30 seconds’ ]

WHERE u.name = up.user_name

GROUP BY up.user_name;

4.1.3 Composition of Windows

This model is applicable to more complex queries. Suppose that the output of
a mixed join is used in another continuous query. For example, a relation-to-
stream operator might be applied to the mixed join to yield a derived stream.
That derived stream might itself be used as the stream operand to another
mixed join, with a window clause that differs from the window clause of the
original mixed join. In this situation, how should multiple mixed joins in this
query be isolated from changes to their base relations?

A critical assumption is that derived streams are treated as independent
by the DSMS. That is, the DSMS does not make a fundamental distinction
between the tuples emitted by a derived stream and the tuples contained in a
base stream: both are merely sequences of independent tuples. The tuples in a
data stream have no fundamental grouping: they are organized into windows by
the window clause of a given query that accesses the stream. This assumption
justifies our policy that the snapshots seen by these two mixed joins depend on
only on their own window clauses.

Algorithm 3 contains an example query that illustrates a potential problem
with this model. The user_purchases derived stream contains stock purchases
made by a group of users (stored in the users table). Each user has an associated
set of “interesting” stocks, which as before is stored in the stocks_of_interest
table. The user_purchases derived stream can be used in other queries. For
example, Algorithm 3 also includes a continuous query computes the “total
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wealth” of each user, by summing their recent stock purchases with their bank
account balance.

This example is problematic, because the users table is joined twice: because
their window boundaries differ, the continuous query and the derived stream
will see different snapshots of the users table. This may yield inconsistent or
unexpected results.

It is also possible for a single query to contain multiple, differing window
clauses. For example, a query might contain two independent mixed joins, the
outputs of which are then joined. As with derived streams, we treat the two
mixed joins as independent: the database snapshot seen by each mixed join
depends on its window clause.

4.1.4 Implementation Considerations

Window isolation requires that a new snapshot of the state of the database be
taken at every window boundary. For example, if another client attempts to
modify a relation that participates in a mixed join, the DSMS must ensure that
the mixed join’s snapshot remains valid for the duration of its current window.
Broadly speaking, there are three ways to do this:

1. Prevent the modifying transaction from committing until the end of the
mixed join’s current window

2. Allow the modifying transaction to commit, but only join the window
against the relation at the end of the current window boundary

3. Allow the modifying transaction to commit, but ensure that the mixed
join’s snapshot of the join relation remains unchanged

The first alternative is clearly inefficient, since windows that last for many min-
utes or hours are not uncommon. This approach is even more infeasible if a
single relation participates in several mixed joins with differing windows. The
second alternative is also undesirable, because it disallows the incremental com-
putation of the mixed join’s result set. As described in Section 3.2.2, in many
circumstances the DSMS cannot afford to buffer the entire window’s worth of
data in memory.

Therefore, practical implementations must ensure that a mixed join’s snap-
shot remains unchanged in the face of committed modifications to the join re-
lation. There are two ways in which this might be achieved:

1. The mixed join could materialize the join relation into a temporary table
at the beginning of each window boundary

2. The DSMS could use a concurrency control scheme in which readers do
not block writers; this allows the mixed join to continue to read from its
snapshot of the join relation without preventing modifying transactions
from committing
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The first alternative is impractical if the join relation is large, or window bound-
aries occur with any degree of frequency. Therefore, window isolation is best
implemented in systems that use a concurrency control scheme that allows read-
ers to not block writers. Unfortunately, most traditional lock-based concurrency
control techniques do not satisfy this property. Multi-version concurrency con-
trol (MVCC) is the most popular concurrency control scheme that provides this
capability[BG83].

Note that in this scheme, a single continuous query uses multiple snapshots
over the duration of its execution. If overlapping windows are used, a single
continuous query may even use multiple, inconsistent snapshots of a table at
the same time. This is in contrast to traditional isolation models, which usu-
ally require that a single query use a single, consistent snapshot at any given
time. While this would be challenging to integrate into a standard lock-based
concurrency control scheme, it should be possible in theory to extend a typical
implementation of MVCC to allow the query processor to view different snap-
shots of the table when evaluating different nodes in the graph of operators.

In a typical implementation, the continuous query itself executes inside a
“super-transaction”, and “micro-transactions” are periodically initiated in order
to obtain a new, consistent snapshot of the join relation. It is worth noting that
these micro-transactions are not nested transactions in the usual sense, since a
nested transaction inherits the snapshot of its parent transaction. This model
is closer to the “sagas” technique described in [GMS87]: in the terminology
of that paper, the super-transaction in which the continuous query executes
is analogous to a saga, and the sequence of micro-transactions are effectively
normal transactions.

4.2 Durability

Archived streams are another approach to combining current and historical data
in a DSMS[CF04]. An archived stream is a stream whose content is written
to disk and can be subsequently accessed by queries. As new stream tuples
arrive, the DSMS updates the result sets of any relevant continuous query, and
then periodically adds the stream tuples to the archived stream for later access.
Because archived streams are stored on disk, they should be persistent in the
event of a system crash. This raises durability concerns: how often should
stream tuples be persisted to an archived stream, and what guarantees should
the DSMS make about the durability of archived streams?

Again, we use the window concept as the unit of consistency: as each window
of the archived stream is produced, the database ensures that all the tuples
in that window have been flushed to disk (either by force-writing the tuples
themselves, or flushing a log record describing the necessary modifications).
This ensures that windows are archived in an atomic fashion: either all the
tuples in a window will be persisted in the event of a system crash (if the
window boundary has already passed), or none of them will.

If window boundaries occur infrequently, the DSMS may not be unable to
keep all the tuples in a window in memory until the end of the window. Further-
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more, keeping stream tuples strictly in memory until the next window boundary
produces highly “bursty” I/O usage: the DSMS will likely overload the I/O sub-
system at window boundaries, but leave it largely idle otherwise. Therefore,
a practical implementation of this model would write tuples to the archived
stream as they arrive, or spool them to the archived stream in the background.
At the next window boundary, the DSMS does the equivalent of a transaction
log flush: all remaining stream tuples are flushed to disk, and then a transaction
log record is written to record the end of the window. During crash recovery, the
recovery component of the DSMS should remove all the tuples from the suffix
of an archived stream that do not have an associated “commit” record in the
transaction log.

Note that in database systems, the tuples modified during a transaction are
often randomly distributed over the disk. Due to the relatively high cost of
random I/O, it makes sense to commit transactions by force-writing only the
transaction log to disk, since this requires only sequential I/O, and to allow the
random I/O performed by the transaction to be incrementally written to disk
over time. This is not the case with archived streams: all I/O on the archived
stream consists of sequential append operations, so there is no benefit to writing
a separate transaction log describing each incremental change.

A related problem isolation problem arises when we consider the case of
an archived stream that is accessed (as a relation) by a snapshot query. We
suggest that the snapshot query should see a version of the archived stream
that corresponds to the most recent window boundary, at the time the snapshot
query began execution.

4.3 Crash Recovery

Most of the interesting state in a database system resides on disk. While run-
time state is kept in memory for performance reasons, the system arranges for
all modifications made by committed transactions to be persisted to disk. In
most database applications, any queries that were in progress at the time of
a system crash can safely be aborted. Therefore, crash recovery in database
systems is largely a question of restoring the on-disk state of the database to
consistency: once that is done, in-memory state can either be reconstructed
from the disk contents, or else freshly initialized. Because snapshot queries are
inherently transient, any in-progress snapshot queries can reasonably be aborted
during crash recovery.

In contrast, most of the interesting state in a data stream system is res-
ident in memory. In many cases, data is never written to disk, because it
arrives too quickly and is of relatively short-term interest[GÖ03]. Furthermore,
a long-running continuous query may contain a significant amount of state: for
example, an aggregate function computed over a data stream can depend on
all the previously-seen tuples in the stream. Merely aborting and restarting the
query anew if the system fails is undesirable, because it essentially destroys all
this state. Clearly, most data stream applications would prefer that continuous
queries be persistent over system crashes. Many DSMS applications cannot af-
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ford to miss any data, even if the DSMS crashes. This raises the question: how
do we perform correct crash recovery in data stream systems?

4.3.1 Window-Oriented Crash Recovery

If we model a DSMS as a continuous computation that transforms inputs (data
streams) to outputs (result streams) by applying a set of operators (continuous
queries), implementing correct crash recovery requires checkpointing the state
of this computation at various points. To reproduce the state of a computation
at time t, we require two pieces of information:

1. The state of the computation at some time t0 in the past

2. All the data that entered the system between t0 and t

We can use a process analogous to replaying a transaction log to restore the
computation’s in-memory state.2 We now briefly discuss how these two pieces
of information can be recorded in a practical DSMS.

The state of the computation can be recorded by serializing the stream pro-
cessor’s graph of operators to disk. Each operator has some associated in-
memory state that captures part of the state of the computation. For example,
an aggregation operator must maintain the running value of the aggregate. The
DSMS can periodically checkpoint this in-memory state by flushing a copy of it
to disk. The system should take a new snapshot when it reaches a new point of
consistency: roughly speaking, at window boundaries. As with transaction logs
in a DBMS, we assume that there is a stable location (e.g. disk) to store the
checkpoint data in the event of a crash.

To ensure satisfactory performance, two techniques are helpful. First, the
DSMS need only record the incremental difference between the current state
of the operator and the state at the last checkpoint. This significantly reduces
the amount of I/O required. Second, the DSMS can take steps to ensure that
the checkpointing operation can be interleaved with normal execution. This is
important, as many practical data stream management systems cannot afford to
block stream processing while waiting for disk I/O to complete. This interleav-
ing could be implemented by simply making a copy of the in-memory state of
the operator graph, and then using the copy to form the checkpoint. However,
a more fine-grained approach is probably necessary. In theory, by examining
the set of continuous queries, their associated window clauses, and the oper-
ators used to implement the queries, a graph of operators could be split into
sub-graphs that can be checkpointed independently.3 This would allow check-
pointing to be done in parallel, and would also allow the other components

2This assumes that the computation is deterministic: the future state of the computation is
a total function of the computation’s previous state and any additional input data. This does
not hold for probabilistic computations or queries with side effects, but we do not consider
such queries here.

3As noted in Section 3.3.1, shared processing can complicate correct behavior: because a
single operator can be used to implement multiple queries, dividing the operator graph into
independent sub-graphs can be complex.
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of the operator graph to continue query processing while a sub-graph is being
checkpointed.

4.3.2 Buffered Streams

In addition to checkpointing the state of the system, a DSMS must also have
access to any data that entered the system between the time of the last check-
point and the time of the crash. In addition, most systems will want to also
retain any data that has arrived since the system crash.

The DSMS itself cannot maintain this data: data typically arrives too rapidly
to be written to disk on-the-fly[CCD+03]. Instead, we assume that there is a
stable buffer associated with each stream input source. The buffer holds the
most recent k stream tuples, and is assumed to be resilient to system failures.
In practice, this could be implemented by a simple replication scheme, in which n

copies of each incoming stream tuple are made, each stored in a different buffer.
Traditional techniques for replication and high-availability can be used to make
such a system quite robust, although perhaps with non-negligible overhead.

In a traditional DSMS, the data stream input protocol is unidirectional :
a data source connects to the DSMS and sends data to the system’s stream
input manager. When using buffered streams, the DSMS uses a bidirectional
communication protocol, in which the DSMS acknowledges receipt of a stream
tuple when a point of consistency has been reached. This allows the buffered
stream to discard the data the DSMS has acknowledged.

The DSMS sends acknowledgments to the stream buffer when it is certain
that a given stream tuple can safely be discarded. For example, an acknowl-
edgment could be sent for a tuple after routing the tuple to all the nodes of the
operator graph, and then checkpointing the state of those operators. Clearly,
there is a tradeoff between the work required to perform frequent checkpoints,
and the memory required for large stream buffers. Many applications would
be willing to accept weaker crash recovery guarantees in exchange for reduced
checkpoint requirements, so we suggest that this tradeoff be exposed to the user.

It is worth noting that the DSMS only requires stable storage for a finite
amount of data to ensure correct recovery: the state of the operator graph, and
a bounded number of recent stream tuples. The relatively small size of this data
suggests that it could also be stored in a stable medium with high-performance
but small storage capacity, such as flash memory or a solid-state disk.

4.3.3 Summary

In this subsection, we have sketched the design of a window-oriented crash
recovery mechanism for a DSMS. A key problem is determining points of con-
sistency, to record the state of the system to disk, and to allow stream tuples to
be acknowledged. Defining this crash recovery technique more completely and
determining whether it is practical is an area for future work.
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Figure 2: A hypothetical architecture for a transaction-oriented DSMS.

5 The Role of Transactions in a DSMS

In database systems, transactions are operation-oriented : they are used to orga-
nize sequences of related operations into an atomic group. Much of the criteria
for the correct execution of a transaction can be captured in a formal isolation
model, which specifies the transaction schedules that are consistent with the
system’s isolation guarantees.

A DSMS does not execute “sequences of related operations”, so it follows
that transactions will not play the same role in data stream systems that they
do in database systems. As noted in Section 3, data stream processors are data-
driven, not query-driven: query execution in a DSMS often takes the form of
pushing stream tuples through a graph of operators, then discarding the tuple.
The DSMS is largely free to choose the order in which tuples visit nodes of the
operator graph.

Therefore, we suggest that transactions are useful for providing guarantees
about the movement of data into, within, and out of a DSMS. As described in
Section 4.1, the isolation of continuous queries is based on window boundaries,
which essentially defines “points of consistency” at which new snapshots of the
database can be taken by the continuous query. This effectively specifies con-
straints on the movement of data within the DSMS. Sections 4.2 and 4.3 discuss
the application of transaction-like concepts to the movement of data into the
system (from the stream source), to the disk (archived streams), and then even-
tually the delivery of query results to the client or an intermediate middleware
system.

Figure 2 describes a potential architecture for a transaction-oriented DSMS.
Transactional guarantees are provided for all the data movement within the
system: input from (buffered) data streams, to data movement within the DSMS
itself, to the eventual output of result streams to a transactional message queue.
This architecture simplifies the construction of reliable and correct streaming
applications: application programmers can reason more easily about how the
system isolates one query from another, and how it will recover from crashes.
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To an external observer, such a system takes “atomic” steps within the data
stream: it accepts a window’s worth of input, performs internal computations,
and then pushes a window’s worth of results to the system’s output interface.
The “transaction” covers the entire lifecycle of a group of related tuples, from
their arrival in the system to their delivery to the output queue.

6 Conclusions and Future Work

In this paper, we have investigated several ways in which the transaction con-
cept can be applied to data stream management systems. We began by present-
ing background material in Sections 2 and 3, focusing on transaction models
for long-running tasks and the differences between database systems and data
stream systems. In Section 3.2.2, we also introduced the mixed join as a conve-
nient way to express queries that combine live stream data with static relational
data, a requirement that arises frequently in practice.

In Section 4, we proceeded to discuss several situations in which isolation,
durability, and crash recovery in data stream systems would be simplified by the
addition of transaction-like behavior. The concept of dividing a data stream into
windows and maintaining consistency within a window shares some similarity
with techniques like sagas[GMS87], which divide long-lived transactions into a
collection of related“micro-transactions”. As discussed in Section 5, the essential
difference is that data stream systems are data-oriented rather than operation-
oriented: windows serve to define sub-sequences of related tuples within a data
stream. Section 5 also sketches a model for a transaction-oriented DSMS, in
which all data movement within the system is subject to transaction-like guar-
antees. The proposals made in this paper are exploratory by nature: an area for
future work is evaluating which of these ideas are practical, and then defining
them with the appropriate degree of rigour.

We began this work with the intention of defining a transaction model for
data stream processors that was conceptually similar to the formal transaction
isolation models discussed in Section 2.3. While some kind of formal model for
DSMS transactions would still be desirable of course, it is now clear that the
traditional isolation model concepts of serializability and constraints on trans-
action schedules are inappropriate for data stream systems. Defining a more
appropriate and complete transaction model for data stream systems remains
an area for future work. An open question is whether any single formalism can
play the same central role that isolation models play in database systems. The
formulation of a concept analogous to transaction serializability in a database
system would be a major step toward resolving this question.
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