
Usher: Improving Data Quality with Dynamic
Forms

Kuang Chen #1, Harr Chen ∗2, Neil Conway #3, Joseph M. Hellerstein #4, Tapan S. Parikh +5

#Department of Electrical Engineering and Computer Science, University of California, Berkeley
2599 Hearst Ave, Berkeley, CA 94720 USA

1
kuangc@cs.berkeley.edu

3
nrc@cs.berkeley.edu

4
hellerstein@cs.berkeley.edu

∗Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology
32 Vassar St, Cambridge, MA 02139 USA

2
harr@csail.mit.edu

+School of Information, University of California, Berkeley
102 South Hall, Berkeley, CA 94720 USA

5
parikh@ischool.berkeley.edu

Abstract

Data quality is a critical problem in modern databases. Data entry forms present the first and arguably best opportunity

for detecting and mitigating errors, but there has been little research into automatic methods for improving data quality

at entry time. In this paper, we propose USHER, an end-to-end system for form design, entry, and data quality assurance.

Using previous form submissions, USHER learns a probabilistic model over the questions of the form. USHER then applies this

model at every step of the data entry process to improve data quality. Before entry, it induces a form layout that captures the

most important data values of a form instance as quickly as possible and reduces the complexity of error-prone questions.

During entry, it dynamically adapts the form to the values being entered by providing real-time interface feedback, re-

asking questions with dubious responses, and simplifying questions by reformulating them. After entry, it revisits question

responses that it deems likely to have been entered incorrectly by re-asking the question or a reformulation thereof. We

evaluate these components of USHER using two real-world data sets. Our results demonstrate that USHER can improve data

quality considerably at a reduced cost when compared to current practice.

Index Terms

Data quality, data entry, form design, adaptive form

F

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 0, NO. 0, MONTH 2010 1

Usher: Improving Data Quality with Dynamic

Forms

1 INTRODUCTION

O RGANIZATIONS and individuals routinely make impor-

tant decisions based on inaccurate data stored in sup-

posedly authoritative databases. Data errors in some domains,

such as medicine, may have particularly severe consequences.

These errors can arise at a variety of points in the lifecycle of

data, from data entry, through storage, integration, and clean-

ing, all the way to analysis and decision-making [1]. While

each step presents an opportunity to address data quality, entry

time offers the earliest opportunity to catch and correct errors.

The database community has focused on data cleaning once

data has been collected into a database, and has paid relatively

little attention to data quality at collection time [1], [2]. Current

best practices for quality during data entry come from the field

of survey methodology, which offers principles that include

manual question orderings and input constraints, and double

entry of paper forms [3]. Although this has long been the

de facto quality assurance standard in data collection and

transformation, we believe this area merits reconsideration. For

both paper forms and direct electronic entry, we posit that a

data-driven and more computationally sophisticated approach

can significantly outperform these decades-old static methods

in both accuracy and efficiency of data entry.

The problem of data quality is magnified in low-resource

data collection settings. Recently, the World Health Organiza-

tion likened the lack of quality health information in develop-

ing regions to a “gathering storm,” saying, “[to] make people

count, we first need to be able to count people” [4]. Indeed,

many health organizations, particularly those operating with

limited resources in developing regions, struggle with collect-

ing high-quality data. Why is data collection so challenging?

First, many organizations lack expertise in paper and electronic

form design: designers approach question and answer choice

selection with a defensive, catch-all mindset, adding answer

choices and questions that may not be necessary; furthermore,

they engage in ad hoc mapping of required data fields to

data entry widgets by intuition [5], [6], often ignoring or

specifying ill-fitting constraints. Second, double entry is too

costly. In some cases this means it is simply not performed,

resulting in poor data quality. In other cases, particularly when

double entry is mandated by third parties, it results in delays

and other unintended negative consequences. We observed

this scenario in an HIV/AIDS program in Tanzania, where

time-consuming double entry was imposed upon a busy local

clinic. The effort required to do the double entry meant that

the transcription was postponed for months and handled in

batch. Although the data eventually percolated up to national

and international agencies, in the interim the local clinic was

operating as usual via paper forms, unable to benefit from an

electronic view of the data latent in their organization. Finally,

many organizations in developing regions are beginning to

use mobile devices like smartphones for data collection; for

instance, community health workers are doing direct digital

data entry in remote locations. Electronic data entry devices

offer different affordances than those of paper, displacing the

role of traditional form design and double entry [5]. We often

found that there were no data quality checks at all in naı̈vely

implemented mobile interfaces, compounding the fact that

mobile data entry quality is ten times worse than dictation

to a human operator [7].

To address this spectrum of data quality challenges, we have

developed USHER, an end-to-end system that can improve

data quality and efficiency at the point of entry by learning

probabilistic models from existing data, which stochastically

relate the questions of a data entry form. These models form

a principled foundation on which we develop information-

theoretic algorithms for form design, dynamic form adaptation

during entry, and answer verification:

1) Since form layout and question selection is often ad

hoc, USHER optimizes question ordering according to

a probabilistic objective function that aims to maximize

the information content of form answers as early as

possible — we call this the greedy information gain

principle. Applied before entry, the model generates

a static but entropy-optimal ordering, which focus on

important questions first; during entry, it can be used to

dynamically pick the next best question, based on an-

swers so-far — appropriate in scenarios where question

ordering can be flexible between instances.

2) Applying its probabilistic model during data entry,

USHER can evaluate the conditional distribution of an-

swers to a form question, and make it easier for likely

answers to be entered — we call this the appropriate en-

try friction principle. For difficult-to-answer questions,

such as those with many extraneous choices, USHER can

opportunistically reformulate them to be easier and more

congruous with the available information. In this way,

USHER effectively allows for a principled, controlled

tradeoff between data quality and form filling effort and

time.

3) Finally, the stochastic model is consulted to predict

which responses may be erroneous, so as to re-ask those

questions in order to verify their correctness — we

call this the contextualized error likelihood principle.

We consider re-asking questions both during the data

entry process (integrated re-asking) and after data entry

has been finished (post-hoc re-asking). In both cases,

intelligent question re-asking approximates the benefits

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 0, NO. 0, MONTH 2010 2

of double entry at a fraction of the cost.

In addition, we may extend USHER’s appropriate entry friction

approach to provide a framework for reasoning about feedback

mechanisms for the data-entry user interface. During data

entry, using the likelihood of unanswered fields given entered

answers, and following the intuition that multivariate outliers

are values warranting reexamination by the data entry worker,

USHER can guide the user with much more specific and

context-aware feedback. In Section 9, we offer initial thoughts

on design patterns for USHER-inspired dynamic data entry

interfaces.

The contributions of this paper are fourfold:

1) We describe the design of USHER’s core: probabilistic

models for arbitrary data entry forms.

2) We describe USHER’s application of these models to

provide guidance along each step of the data entry life-

cycle: reordering questions for greedy information gain,

reformulating answers for appropriate entry friction, and

re-asking questions according to contextualized error

likelihood.

3) We present experiments showing that USHER has the

potential to improve data quality at reduced cost. We

study two representative data sets: direct electronic entry

of survey results about political opinion and transcription

of paper-based patient intake forms from an HIV/AIDS

clinic in Tanzania.

4) Extending our ideas on form dynamics, we propose new

user interface principles for providing contextualized,

intuitive feedback based on the likelihood of data as it

is entered. This provides a foundation for incorporating

data cleaning mechanisms directly in the entry process.

2 RELATED WORK

Our work builds upon several areas of related work. We

provide an overview in this section.

2.1 Data Cleaning

In the database literature, data quality has typically been

addressed under the rubric of data cleaning [1], [2]. Our work

connects most directly to data cleaning via multivariate outlier

detection; it is based in part on interface ideas first proposed

by Hellerstein [8]. By the time such retrospective data cleaning

is done, the physical source of the data is typically unavailable

— thus, errors often become too difficult or time-consuming to

be rectified. USHER addresses this issue by applying statistical

data quality insights at the time of data entry. Thus, it can catch

errors when they are made and when ground-truth values may

still be available for verification.

2.2 User Interfaces

Past research on improving data entry is mostly focused on

adapting the data entry interface for user efficiency improve-

ments. Several such projects have used learning techniques

to automatically fill or predict a top-k set of likely values [9],

[10], [11], [12], [13], [14], [15]. For example, Ali and Meek [9]

predicted values for combo-boxes in web forms and measured

improvements in the speed of entry, Ecopod [15] generated

type-ahead suggestions that were improved by geographic

information, and Hermens et al. [10] automatically filled leave-

of-absence forms using decision trees and measured predictive

accuracy and time savings. In these approaches, learning

techniques are used to predict form values based on past data,

and each measures the time savings of particular data entry

mechanisms and/or the proportion of values their model was

able to correctly predict. USHER’s focus is on improving data

quality, and its probabilistic formalism is based on learning

relationships within the underlying data that guide the user

towards correct entries. In addition to predicting question val-

ues, we develop and exploit probabilistic models of user error,

and target a broader set of interface adaptations for improving

data quality, including question reordering, reformulation, and

re-asking, and widget customizations that provide feedback to

the user based on the likelihood of their entries. Some of the

enhancements we make for data quality could also be applied

to improve the speed of entry.

2.3 Clinical Trials

Data quality assurance is a prominent topic in the science of

clinical trials, where the practice of double entry has been

questioned and dissected, but nonetheless remains the gold

standard [16], [17]. In particular, Kleinman takes a probabilis-

tic approach toward choosing which forms to re-enter based

on the individual performance of data entry staff [18]. This

cross-form validation has the same goal as our approach of

reducing the need for complete double entry, but does so

at a much coarser level of granularity. It requires historical

performance records for each data entry worker, and does not

offer dynamic reconfirmation of individual questions. In con-

trast, USHER’s cross-question validation adapts to the actual

data being entered in light of previous form submissions, and

allows for a principled assessment of the tradeoff between cost

(of reconfirming more questions) versus quality (as predicted

by the probabilistic model).

2.4 Survey Design

The survey design literature includes extensive work on form

design techniques that can improve data quality [3], [19]. This

literature advocates the use of manually specified constraints

on response values. These constraints may be univariate (e.g.,

a maximum value for an age question) or multivariate (e.g.,

disallowing gender to be male and pregnant to be yes). Some

constraints may also be “soft” and only serve as warnings re-

garding unlikely combinations (e.g., age being 60 and pregnant

being yes).

The manual specification of such constraints requires a

domain expert, which can be prohibitive in many scenarios.

By relying on prior data, USHER learns many of these same

constraints without requiring their explicit specification. When

these constraints are violated during entry, USHER can then

flag the relevant questions, or target them for re-asking.

However, USHER does not preclude the manual specifi-

cation of constraints. This is critical, because previous re-

search into the psychological phenomena of survey filling

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 0, NO. 0, MONTH 2010 3

has yielded common constraints not inherently learnable from

prior data [3]. This work provides heuristics such as “groups

of topically related questions should often be placed together”

and “questions about race should appear at the end of a sur-

vey.” USHER complements these human-specified constraints,

accommodating them while leveraging any remaining flexibil-

ity to optimize question ordering in a data-driven manner.

3 SYSTEM

USHER builds a probabilistic model for an arbitrary data

entry form in two steps: first, by learning the relationships

between form questions via structure learning, resulting in a

Bayesian network; and second, by estimating the parameters

of that Bayesian network, which then allows us to generate

predictions and error probabilities for the form.

After the model is built, USHER uses it to automatically or-

der a form’s questions for greedy information gain. Section 5

describes both static and dynamic algorithms that employ

criteria based on the magnitude of statistical information

gain that is expected in answering a question, given the

answers that have been provided so far. This is a key idea

in our approach. By front-loading predictive potential, we

increase the models’ capacity in several ways. First, from

an information theoretic perspective, we improve our ability

to do multivariate prediction and outlier detection for subse-

quent questions. As we discuss in more detail in Sections 7

and 9, this predictive ability can be applied by reformulating

error-prone form questions, parametrizing data entry widgets

(type-ahead suggestions, default values), assessing answers

(outlier flags), and performing in-flight re-asking (also known

as cross-validation in survey design parlance). Second, from

a psychological perspective, front-loading information gain

also addresses the human issues of user fatigue and limited

attention span, which can result in increasing error rates over

time and unanswered questions at the end of the form.

Our approach is driven by the same intuition underlying the

practice of curbstoning, which was related to us in discussion

with survey design experts [6]. Curbstoning is a way in which

an unscrupulous door-to-door surveyor shirks work: he or she

asks an interviewee only a few important questions, and then

uses those responses to complete the remainder of a form

while sitting on the curb outside the home. The constructive

insight here is that a well-chosen subset of questions can

often enable an experienced agent to intuitively predict the

remaining answers. USHER’s question ordering algorithms

formalize this intuition via the principle of greedy information

gain, and use them (scrupulously) to improve data entry.

USHER’s learning algorithm relies on training data. In

practice, a data entry backlog can serve as this training

set. In the absence of sufficient training data, USHER can

bootstrap itself on a “uniform prior,” generating a form based

on the assumption that all inputs are equally likely; this is

no worse than standard practice. Subsequently, a training set

can gradually be constructed by iteratively capturing data from

designers and potential users in “learning runs.” It is a common

approach to first fit to the available data, and then evolve a

Marital
Status

Referred
From

Prior
Exposure

DateConfirmed
HIVPositive

DateFirstPositive
HIVTest

Sex DateOfBirth

DistrictCode

RegionCode

Fig. 1. Bayesian network for the patient dataset, showing

automatically inferred probabilistic relationships between

form questions.

model as new data becomes available. This process of semi-

automated form design can help institutionalize new forms

before they are deployed in production.

USHER adapts to a form and dataset by crafting a custom

model. Of course, as in many learning systems, the model

learned may not translate across contexts. We do not claim

that each learned model would or should fully generalize to

different environments. Instead, each context-specific model

is used to ensure data quality for a particular situation,

where we expect relatively consistent patterns in input data

characteristics. In the remainder of this section, we illustrate

USHER’s functionality with examples. Further details, partic-

ularly regarding the probabilistic model, follow in the ensuing

sections.

3.1 Examples

We present two running examples. First, the patient dataset

comes from paper patient-registration forms transcribed by

data entry workers at an HIV/AIDS program in Tanzania.1

Second, the survey dataset comes from a phone survey of

political opinion in the San Francisco Bay Area, entered by

survey professionals directly into an electronic form.

In each example, a form designer begins by creating a sim-

ple specification of form questions and their prompts, response

data types, and constraints. The training data set is made up

of prior form responses. Using the learning algorithms we

present in Section 4, USHER builds a Bayesian network of

probabilistic relationships from the data, as shown in Figures

1 and 2. In this graph, an edge captures a close stochastic

dependency between two random variables (i.e., form ques-

tions). Two questions with no path between them in the graph

are probabilistically independent. Figure 2 illustrates a denser

graph, demonstrating that political survey responses tend to

be highly correlated. Note that a standard joint distribution

would show correlations among all pairs of questions; the

sparsity of these examples reflects conditional independence

patterns learned from the data. Encoding independence in a

Bayesian network is a standard method in machine learning

that clarifies the underlying structure, mitigates data over-

fitting, and improves the efficiency of probabilistic inference.

1. We have pruned out questions with identifying information about pa-
tients, as well as free-text comment fields.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 0, NO. 0, MONTH 2010 4

Spend
Military

Spend Urban

Spend
Welfare

Political Party

Political
Ideology

Education

Income Employed

Age Marital Gender

Race

Spend Crime

Equal Opp

Case ID

Fig. 2. Bayesian network for the survey dataset. The

probabilistic relationships are more dense. Some rela-

tionships are intuitive (Political Ideology - Political Party),

others show patterns incidental to the dataset (race -

gender).

Fig. 3. Example question layout generated by our order-

ing algorithm. The arrows reflect the probabilistic depen-

dencies from Figure 1.

The learned structure is subject to manual control: a de-

signer can override any learned correlations that are believed to

be spurious or that make the form more difficult to administer.

For the patient dataset, USHER generated the static or-

dering shown in Figure 3. We can see in Figure 3 that the

structure learner predicted RegionCode to be correlated with

DistrictCode. Our data set is collected mostly from clinics

in a single region of Tanzania, so RegionCode provides little

information. It is not surprising then, that USHER’s suggested

ordering has DistrictCode early and RegionCode last — once

we observe DistrictCode, RegionCode has very little additional

expected conditional information gain. When it is time to input

the RegionCode, if the user selects an incorrect value, the

model can be more certain that it is unlikely. If the user

stops early and does not fill in RegionCode, the model can

infer the likely value with higher confidence. In general, static

question orderings are appropriate as an offline process for

paper forms where there is latitude for (re-)ordering questions,

within designer-specified constraints.

During data entry, USHER uses the probabilistic machinery

to drive dynamic updates to the form structure. One type of

update is the dynamic selection of the best next question to ask

among questions yet to be answered. This can be appropriate

in several situations, including surveys that do not expect users

to finish all questions, or direct-entry interfaces (e.g., mobile

phones) where one question is asked at a time. We note that

it is still important to respect the form designer’s a priori

specified question-grouping and -ordering constraints when a

form is dynamically updated.

USHER is also used during data entry to provide dynamic

feedback, by calculating the conditional distribution for the

question in focus and using it to influence the way the

question is presented. We tackle this via two techniques:

question reformulation and widget decoration. For the former,

we could for example choose to reformulate the question about

RegionCode into a binary yes/no question based on the answer

to DistrictCode, since DistrictCode is such a strong predictor

of RegionCode. As we discuss in Section 7, the reduced

selection space for responses in turn reduces the chances of

a data entry worker selecting an incorrect response. For the

latter, possibilities include using a “split” drop-down menu

for RegionCode that features the most likely answers “above

the line,” and after entry, coloring the chosen answer red if

it is a conditional outlier. We discuss in Section 9 the design

space and potential impact of data entry feedback that is more

specific and context aware.

As a form is being filled, USHER calculates contextualized

error probabilities for each question. These values are used

for re-asking questions in two ways: during primary form

entry and for reconfirming answers after an initial pass. For

each form question, USHER predicts how likely the response

provided is erroneous, by examining whether it is likely to

be a multivariate outlier, i.e., that it is unlikely with respect

to the responses for other fields. In other words, an error

probability is conditioned on all answered values provided

by the data entry worker so far. If there are responses with

error probabilities exceeding a pre-set threshold, USHER re-

asks those questions ordered by techniques to be discussed in

Section 6.

3.2 Implementation

We have implemented USHER as a web application (Figure 4).

The UI loads a simple form specification file containing form

question details and the location of the training data set. Form

question details include question name, prompt, data type,

widget type, and constraints. The server instantiates a model

for each form. The system passes information about question

responses to the model as they are filled in; in exchange, the

model returns predictions and error probabilities.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 0, NO. 0, MONTH 2010 5

Form
Specification

Probabilistic
Model

Electronic
form

form fields,
prior data

expected,
error

likelihoods

entered
values

Fig. 4. USHER components and data flow: (1) model a

form and its data, (2) generate question ordering accord-

ing to greedy information gain, (3) instantiate the form in

a data entry interface, (4) during and immediately after

data entry, provide dynamic re-ordering, feedback and re-

confirmation according to contextualized error likelihood.

Models are created from the form specification, the training

data set, and a graph of learned structural relationships.

We perform structure learning offline with BANJO [20], an

open source Java package for structure learning of Bayesian

networks. Our graphical model is implemented in two variants:

the first model used for ordering is based on a modified

version of JavaBayes [21], an open-source Java software for

Bayesian inference. Because JavaBayes only supports discrete

probability variables, we implemented the error prediction

version of our model using Infer.NET [22], a Microsoft .NET

Framework toolkit for Bayesian inference.

4 LEARNING A MODEL FOR DATA ENTRY

The core of the USHER system is its probabilistic model of the

data, represented as a Bayesian network over form questions.

This network captures relationships between a form’s question

elements in a stochastic manner. In particular, given input

values for some subset of the questions of a particular form

instance, the model can infer probability distributions over

values of that instance’s remaining unanswered questions.

In this section, we show how standard machine learning

techniques can be used to induce this model from previous

form entries.

We will use F = {F1, . . . , Fn} to denote a set of random

variables representing the values of n questions comprising

a data entry form. We assume that each question response

takes on a finite set of discrete values; continuous values

are discretized by dividing the data range into intervals and

assigning each interval one value.2 To learn the probabilistic

model, we assume access to prior entries for the same form.

USHER first builds a Bayesian network over the form

questions, which will allow it to compute probability dis-

tributions over arbitrary subsets G ⊆ F of form question

2. Using richer distributions to model fields with continuous or ordinal
answers (e.g., with Gaussian models) could provide additional improvement,
and is left for future work.

random variables, given already entered question responses

G′ = g′ for that instance, i.e., P (G | G′ = g′). Constructing

this network requires two steps: first, the induction of the

graph structure of the network, which encodes the conditional

independencies between the question random variables F; and

second, the estimation of the resulting network’s parameters.

The naı̈ve approach to structure selection would be to

assume complete dependence of each question on every other

question. However, this would blow up the number of free

parameters in our model, leading to both poor generaliza-

tion performance of our predictions and prohibitively slow

model queries. Instead, we learn the structure using the prior

form submissions in the database. USHER searches through

the space of possible structures using simulated annealing,

and chooses the best structure according to the Bayesian

Dirichlet Equivalence criterion [23]. This criterion optimizes

for a tradeoff between model expressiveness (using a richer

dependency structure) and model parsimony (using a smaller

number of parameters), thus identifying only the prominent,

recurring probabilistic dependencies. Figures 1 and 2 show

automatically learned structures for two data domains.3

In certain domains, form designers may already have strong

common-sense notions of questions that should or should

not depend on each other (e.g., education level and income

are related, whereas gender and race are independent). As

a postprocessing step, the form designer can manually tune

the resulting model to incorporate such intuitions. In fact,

the entire structure could be manually constructed in do-

mains where an expert has comprehensive prior knowledge

of the questions’ interdependencies. However, a casual form

designer is unlikely to consider the complete space of question

combinations when identifying correlations. In most settings,

we believe an automatic approach to learning multivariate

correlations would yield more effective inference.

Given a graphical structure of the questions, we can then

estimate the conditional probability tables that parameterize

each node in a straightforward manner, by counting the

proportion of previous form submissions with those response

assignments. The probability mass function for a single ques-

tion Fi with m possible discrete values, conditioned on its set

of parent nodes P(Fi) from the Bayesian network, is:

P (Fi = fi | {Fj = fj : Fj ∈ P(Fi)})

=
N(Fi = fi, {Fj = fj : Fj ∈ P(Fi)})

N({Fj = fj : Fj ∈ P(Fi)})
. (1)

In this notation, P (Fi = fi | {Fj = fj : Fj ∈ P(Fi)})
refers to the conditional probability of question Fi taking value

fi, given that each question Fj in P(Fi) takes on value fj .

Here, N(X) is the number of prior form submissions that

match the conditions X — in the denominator, we count the

number of times a previous submission had the subset P(Fi)
of its questions set according to the listed fj values; and in the

numerator, we count the number of times when those previous

submissions additionally had Fi set to fi.

3. It is important to note that the arrows in the network do not represent
causality, only that there is a probabilistic relationship between the questions.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 0, NO. 0, MONTH 2010 6

Input: Model G with questions F = {F1, . . . , Fn}
Output: Ordering of questions O = (O1, . . . , On)
O← ∅;
while |O| < n do

F ← argmaxFi /∈O H(Fi | O);
O← (O, F);

end
Algorithm 1: Static ordering algorithm for form layout.

Because the number of prior form instances may be limited,

and thus may not account for all possible combinations of prior

question responses, equation 1 may assign zero probability to

some combinations of responses. Typically, this is undesir-

able; just because a particular combination of values has not

occurred in the past does not mean that combination cannot

occur at all. We overcome this obstacle by smoothing these

parameter estimates, interpolating each with a background

uniform distribution. In particular, we revise our estimates to:

P (Fi = fi | {Fj = fj : Fj ∈ P(Fi)})

= (1− α)
N(Fi = fi, {Fj = fj : Fj ∈ P(Fi)})

N({Fj = fj : Fj ∈ P(Fi)})
+

α

m
, (2)

where m is the number of possible values question Fi can

take on, and α is the fixed smoothing parameter, which was

set to 0.1 in our implementation. This approach is essentially

a form of Jelinek-Mercer smoothing with a uniform backoff

distribution [24].

Once the Bayesian network is constructed, we can infer

distributions of the form P (G | G′ = g′) for arbitrary

G,G′ ⊆ F — that is, the marginal distributions over sets of

random variables, optionally conditioned on observed values

for other variables. Answering such queries is known as the

inference task. There exist a variety of inference techniques.

In our experiments, the Bayesian networks are small enough

that exact techniques such as the junction tree algorithm [25]

can be used. For larger models, faster approximate inference

techniques like Loop Belief Propagation or Gibbs Sampling

— common and effective approaches in Machine Learning —

may be preferable.

5 QUESTION ORDERING

Having described the Bayesian network, we now turn to its

applications in the USHER system. We first consider ways of

automatically ordering the questions of a data entry form. The

key idea behind our ordering algorithm is greedy information

gain — that is, to reduce the amount of uncertainty of a single

form instance as quickly as possible. Note that regardless of

how questions are ordered, the total amount of uncertainty

about all of the responses taken together — and hence the

total amount of information that can be acquired from an entire

form submission — is fixed. By reducing this uncertainty as

early as possible, we can be more certain about the values of

later questions. The benefits of greater certainty about later

questions are two-fold. First, it allows us to more accurately

provide data entry feedback for those questions. Second, we

can more accurately predict missing values for incomplete

form submissions.

We can quantify uncertainty using information entropy. A

question whose random variable has high entropy reflects

greater underlying uncertainty about the responses that ques-

tion can take on. Formally, the entropy of random variable Fi

is given by:

H(Fi) = −
∑

fi

P (fi) logP (fi), (3)

where the sum is over all possible values fi that question Fi

can take on.

As question values are entered for a single form instance,

the uncertainty about the remaining questions of that instance

changes. For example, in the race and politics survey, knowing

the respondent’s political party provides strong evidence about

his or her political ideology. We can quantify the amount

of uncertainty remaining in a question Fi, assuming that

other questions G = {F1, . . . , Fn} have been previously

encountered, with its conditional entropy:

H(Fi | G)

= −
∑

g=(f1,...,fn)

∑

fi

P (G = g, Fi = fi) logP (Fi = fi | G = g),

(4)

where the sum is over all possible question responses in

the Cartesian product of F1, . . . , Fn, Fi. Conditional entropy

measures the weighted average of the entropy of question Fj’s

conditional distribution, given every possible assignment of

the previously observed variables. This value is obtained by

performing inference on the Bayesian network to compute the

necessary distributions. By taking advantage of the conditional

independences encoded in the network, we can typically drop

many terms from the conditioning in Equation 4 for faster

computation.4

Our full static ordering algorithm based on greedy infor-

mation gain is presented in Algorithm 1. We select the entire

question ordering in a stepwise manner, starting with the

first question. At the ith step, we choose the question with

the highest conditional entropy, given the questions that have

already been selected. We call this ordering “static” because

the algorithm is run offline, based only on the learned Bayesian

network, and does not change during the actual data entry

session.

In many scenarios the form designer would like to specify

natural groupings of questions that should be presented to

the user as one section. Our model can be easily adapted

to handle this constraint by maximizing entropy between

specified groups of questions. We can select these groups

according to joint entropy:

argmax
G

H(G | F1, . . . , Fi−1), (5)

where G is over the form designers’ specified groups of ques-

tions. We can then further apply the static ordering algorithm

4. Conditional entropy can also be expressed as the incremental difference
in joint entropy due to Fi, that is, H(Fi | G) = H(Fi,G) − H(G).
Writing out the sum of entropies for an entire form using this expression
yields a telescoping sum that reduces to the fixed value H(F). Thus, this
formulation confirms our previous intuition that no matter what ordering we
select, the total amount of uncertainty is still the same.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 0, NO. 0, MONTH 2010 7

to order questions within each individual section. In this way,

we capture the highest possible amount of uncertainty while

still conforming to ordering constraints imposed by the form

designer.

Form designers may also want to specify other kinds of

constraints on form layout, such as a partial ordering over

the questions that must be respected. The greedy approach

can accommodate such constraints by restricting the choice of

fields at every step to match the partial order.

5.1 Reordering Questions during Data Entry

In electronic form settings, we can take our ordering notion a

step further and dynamically reorder questions in a form as an

instance is being entered. This approach can be appropriate for

scenarios when data entry workers input one or several values

at a time, such as on a mobile device. We can apply the same

greedy information gain criterion as in Algorithm 1, but update

the calculations with the previous responses in the same form

instance. Assuming questions G = {F1, . . . , Fℓ} have already

been filled in with values g = {f1, . . . , fℓ}, the next question

is selected by maximizing:

H(Fi | G = g)

= −
∑

fi

P (Fi = fi | G = g) logP (Fi = fi | G = g). (6)

Notice that this objective is the same as Equation 4, except

that it uses the actual responses entered for previous questions,

rather than taking a weighted average over all possible values.

Constraints specified by the form designer, such as topical

grouping, can also be respected in the dynamic framework by

restricting the selection of next questions at every step.

In general, dynamic reordering can be particularly useful in

scenarios where the input of one value determines the value

of another. For example, in a form with questions for gender

and pregnant, a response of male for the former dictates the

value and potential information gain of the latter. However,

dynamic reordering may be confusing to data entry workers

who routinely enter information into the same form, and have

come to expect a specific question order. Determining the

tradeoff between these opposing concerns is a human factors

issue that depends on both the application domain and the user

interface employed.

6 QUESTION RE-ASKING

The next application of USHER’s probabilistic model is for

the purpose of identifying errors made during entry. Because

this determination is made during and immediately after form

submission, USHER can choose to re-ask questions during the

same entry session. By focusing the re-asking effort only on

questions that were likely to be misentered, USHER is likely

to catch mistakes at a small incremental cost to the data

entry worker. Our approach is a data-driven alternative to the

expensive practice of double entry. Rather than re-asking every

question, we focus re-asking effort only on question responses

that are unlikely with respect to the other form responses.

!

θ
i

α,β F
i

D
i

R
i

Fi

Fj

Z

z ∈ Z
λ

Fig. 5. The error model. Observed variable Di represents

the actual input provided by the data entry worker for the

ith question, while hidden variable Fi is the true value

of that question. The rectangular plate around the center

variables denotes that those variables are repeated for

each of the ℓ form questions with responses that have

already been input. The F variables are connected by

edges z ∈ Z, representing the relationships discovered in

the structure learning process; this is the same structure

used for the question ordering component. Variable θi
represents the “error” distribution, which in our current

model is uniform over all possible values. Variable Ri

is a hidden binary indicator variable specifying whether

the entered data was erroneous; its probability λi is

drawn from a Beta prior with fixed hyperparameters α and

β. Shaded nodes denote observed variables, and clear

nodes denote hidden variables.

Before exploring how USHER performs re-asking, we ex-

plain how it determines whether a question response is er-

roneous. USHER estimates contextualized error likelihood for

each question response, i.e., a probability of error that is con-

ditioned on every other previously entered field response. The

intuition behind error detection is straightforward: questions

whose responses are “unexpected” with respect to the rest of

the known input responses are more likely to be incorrect.

These error likelihoods are measured both during and after

the entry of a single form instance.

6.1 Error Model

To formally model the notion of error, we extend our Bayesian

network from Section 4 to a more sophisticated representation

that ties together intended and actual question responses. We

call the Bayesian network augmented with these additional

random variables the error model. Specifically, we posit a

network where each question is augmented with additional

nodes to capture a probabilistic view of entry error. For

question i, we have the following set of random and observed

variables:

• Fi: the correct value for the question, which is unknown

to the system, and thus a hidden variable.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 0, NO. 0, MONTH 2010 8

• Di: the question response provided by the data entry

worker, an observed variable.

• θi: the observed variable representing the parameters of

the probability distribution of mistakes across possible

answers, which is fixed per question.5 We call the distri-

bution with parameters θi the error distribution. For the

current version of our model, θi is set to yield a uniform

distribution.

• Ri: a binary hidden variable specifying whether an error

was made in this question. When Ri = 0 (i.e., when no

error is made), then Fi takes the same value as Di.

Additionally, we introduce a hidden variable λ, shared across

all questions, specifying how likely errors are to occur for a

typical question of that form instance. Intuitively, λ plays the

role of a prior error rate, and is modeled as a hidden variable

so that its value can be learned directly from the data.

Note that the relationships between field values discovered

during structure learning are still part of the graph, so that the

error predictions are contextualized in the answers of other

related questions.

Within an individual question, the relationships between the

newly introduced variables are shown in Figure 5. The diagram

follows standard plate diagram notation [26]. In brief, the

rectangle is a plate containing a group of variables specific

to a single question i. This rectangle is replicated for each

of ℓ form questions. The F variables in each question group

are connected by edges z ∈ Z, representing the relationships

discovered in the structure learning process; this is the same

structure used for the question ordering component. The

remaining edges represent direct probabilistic relationships

between the variables that are described in greater detail below.

Shaded nodes denote observed variables, and clear nodes

denote hidden variables.

Node Ri ∈ {0, 1} is a hidden indicator variable specifying

whether an error will happen at this question. Our model posits

that a data entry worker implicitly flips a coin for Ri when

entering a response for question i, with probability of one

equal to λ. Formally, this means Ri is drawn from a Bernoulli

distribution with parameter λ:

Ri | λ ∼ Bernoulli(λ) (7)

The value of Ri affects how Fi and Di are related, which is

described in detail later in this section.

We also allow the model to learn the prior probability for the

λ directly from the data. This value represents the probability

of making a mistake on any arbitrary question. Note that λ
is shared across all form questions. Learning a value for λ
rather than fixing it allows the model to produce an overall

probability of error for an entire form instance as well as for

individual questions. The prior distribution for λ is a Beta

distribution, which is a continuous distribution over the real

numbers from zero to one:

λ ∼ Beta(α, β) (8)

5. Note that in a hierarchical Bayesian formulation such as ours, random
variables can represent not just specific values but also parameters of distri-
butions. Here, θi is the parameters of the error distribution.

The Beta distribution takes two hyperparameters α and β,

which we set to fixed constants (1, 19). The use of a Beta prior

distribution for a Bernoulli random variable is standard prac-

tice in Bayesian modeling due to mathematical convenience

and the interpretability of the hyperparameters as effective

counts [27].

We now turn to true question value Fi and observed input

Di. First, P (Fi | . . .) is still defined as in Section 4, maintain-

ing as before the multivariate relationships between questions.

Second, the user question response Di is modeled as being

drawn from either the true answer Fi or the error distribution

θi, depending on whether a mistake is made according to Ri:

Di | Fi, θi, Ri ∼

{

PointMass(Fi) if Ri = 0,

Discrete(θi) otherwise,
(9)

If Ri = 0, no error occurs and the data entry worker inputs

the correct value for Di, and thus Fi = Di. Probabilistically,

this means Di’s probability is concentrated around Fi (i.e.,

a point mass at Fi). However, if Ri = 1, then the data

entry worker makes a mistake, and instead chooses a response

for the question from the error distribution. Again, this error

distribution is a discrete distribution over possible question

responses parameterized by the fixed parameters θi, which we

set to be the uniform distribution in our current model.6

6.2 Error Model Inference

The ultimate variable of interest in the error model is Ri:

we wish to induce the probability of making an error for

each previously answered question, given the actual question

responses that are currently available:

P (Ri | D = d), (10)

where D = {F1, . . . , Fℓ} are the fields that currently have

responses, the values of which are d = {f1, . . . , fℓ} re-

spectively. This probability represents a contextualized error

likelihood due to its dependence on other field values through

the Bayesian network.

Again, we can use standard Bayesian inference procedures

to compute this probability. These procedures are black-box

algorithms whose technical descriptions are beyond the scope

of this paper. We refer the reader to standard graphical model

texts for an in-depth review of different techniques [25], [28].

In our implementation, we use the Infer.NET toolkit [22] with

the Expectation Propagation algorithm [29] for this estimation.

6.3 Deciding when to Re-ask

Once we have inferred a probability of error for each question,

we can choose to perform re-asking either during entry, where

the error model is consulted after each response, or after

entry, where the error model is consulted once with all form

responses, or both.

6. A more precise error distribution would allow the model to be especially
wary of common mistakes. However, learning such a distribution is itself a
large undertaking involving carefully designed user studies with a variety of
input widgets, form layouts, and other interface variations, and a post-hoc
labeling of data for errors. This is another area for future work.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 0, NO. 0, MONTH 2010 9

Fig. 6. An example of a reformulated question.

The advantage of integrating re-asking into the primary

entry process is that errors can be caught as they occur, when

the particular question being entered is still recent in the data

entry worker’s attention. The cognitive cost of re-entering a

response at this point is lower than if that question were re-

asked later. However, these error likelihood calculations are

made on the basis of incomplete information — a question

response may at first appear erroneous per se, but when

viewed in the context of concordant responses from the same

instance may appear less suspicious. In contrast, by batching

re-asking at the end of a form instance, USHER can make a

holistic judgment about the error likelihoods of each response,

improving its ability to estimate error. This tradeoff reveals an

underlying human-computer interaction question about how

recency affects ease and accuracy of question response, a full

exploration of which is beyond the scope of this paper.

To decide whether to re-ask an individual question, we need

to consider the tradeoff between improved data quality and the

cost of additional time required for re-asking. USHER allows

the form designer to set an error probability threshold for re-

asking. When that threshold is exceeded for a question, USHER

will re-ask that question, up to a predefined budget of re-asks

for the entire form instance. If the response to the re-asked

question differs from the original response, the question is

flagged for further manual reconciliation, as in double entry.

For in-flight re-asking, we must also choose either the original

or re-asked response for this field for further predictions of

error probabilities in the same form instance. We choose the

value that has the lesser error probability, since in the absence

of further disambiguating information that value is more likely

to be correct according to the model.

7 QUESTION REFORMULATION

Our next application of USHER’s probabilistic formalism is

question reformulation. To reformulate a question means to

simplify it in a way that reduces the chances of the data entry

worker making an error. Figure 6 presents an example of a

question as originally presented and a reformulated version

thereof. Assuming that the correct response is Foot, the data

entry worker would only need to select it out of two rather

than eight choices, reducing the chance of making a mistake.

Moreover, reformulation can enable streamlining of the input

interface, improving data entry throughput.

In this work we consider a constrained range of reformu-

lation types, emphasizing an exploration of the decision to

reformulate rather than the interface details of the reformula-

tion itself. Specifically, our target reformulations are binary

questions confirming whether a particular response is the

correct response, such as in the example. If the response to

the binary question is negative, then we ask again the original,

non-reformulated question. We emphasize that the same basic

data-driven approach described here can be applied to more

complex types of reformulation, for instance, formulating to k
values where k < D, the size of the original answer domain.

The benefits of question reformulation rely on the observa-

tion that different ways of presenting a question will result in

different error rates. This assumption is borne out by research

in the HCI literature. For example, in recent work Wobbrock

et al. [30] showed that users’ chances of clicking an incorrect

location increases with how far and small the target location

is. As a data entry worker is presented with more options to

select from, they will tend to make more mistakes. We also

note that it takes less time for a data entry worker to select

from fewer rather than more choices, due to reduced cognitive

load and shorter movement distances. These findings match

our intuitions about question formulation — as complexity

increases, response time and errors increase as well.

However, question reformulation comes with a price as

well. Since reformulating a question reduces the number of

possible responses presented to the data entry worker, it is

impossible for the reformulated question to capture all possible

legitimate responses. In the example above, if Foot was not

the correct response, then the original question would have

to be asked again to reach a conclusive answer. Thus, the

decision to reformulate should rest on how confident we are

about getting the reformulation “right” — in other words,

the probability of the most likely answer as predicted by a

probabilistic mechanism.

In light of the need for a probabilistic understanding of

the responses, USHER’s reformulation decisions are driven

by the underlying Bayesian network. We consider reformu-

lation in three separate contexts: static reformulation, which

occurs during the form layout process; dynamic reformulation,

which occurs while responses are being entered; and post-

entry reformulation, which is applied in conjunction with re-

asking to provide another form of cross-validation for question

responses.

7.1 Static Reformulation

In the static case, we decide during the design of a form

layout which questions to reformulate, if any, in conjunction

with the question ordering prediction from Section 5. This

form of reformulation simplifies questions that tend to have

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 0, NO. 0, MONTH 2010 10

predominant responses across previous form instances. Static

reformulation is primarily appropriate for situations when

forms are printed on paper and question ordering is fixed.

Standard practice in form design is to include skip-logic, a

notation to skip the full-version of the question should the

answer to the reformulated question be true. Alternatively,

false responses to reformulated questions can be compiled

and subsequently re-asked after the standard form instance is

completed.

For each question, we decide whether to reformulate on

the basis of the probability of its expected response. If that

response exceeds a tunable threshold, then we choose to

reformulate the question into its binary form. Formally, we

reformulate when

max
j

P (Fi = fj) ≥ Ti, (11)

where Ti is the threshold for question i. In this work we

consider values of Ti that are fixed for an entire form, though

in general it could be adjusted on the basis of the original

question’s complexity or susceptibility to erroneous responses.

We note that this reformulation mechanism is directly applica-

ble for questions with discrete answers, either categorical (e.g.,

blood-type) or ordinal (e.g., age); truly continuous values (e.g.,

weight) must be discretized before reformulation. However,

continuous questions with large answer domain cardinalities

are less likely to trigger reformulation, especially if their

probability distributions are fairly uniform.

Setting the threshold T provides a mechanism for trading

off improvements in data quality with the potential drawback

of having to re-ask more questions. At one extreme, we

can choose to never reformulate; at the other, if we set a

low threshold we would provide simplified versions of every

question, at the cost of doubling the number of questions asked

in the worst-case.

7.2 Dynamic Reformulation

Paralleling the dynamic approach we developed for question

ordering (Section 5.1), we can also decide to reformulate

questions during form entry, making the decision based on

previous responses. The advantage of dynamic reformulation

is that it has the flexibility to change a question based on

context – as a simple example, conditioned on the answer

for an age question being 12, we may choose to reformulate

a question about occupation into a binary is-student question.

Dynamic reformulation is appropriate in many electronic, non-

paper based workflows. In this case, the reformulation decision

is based on a conditional expected response; for question i we

reformulate when

max
j

P (Fi = fj | G = g) ≥ Ti, (12)

where previous questions G = {F1, . . . , Fℓ} have already

been filled in with values g = {f1, . . . , fℓ}. Note the sim-

ilarities in how the objective function is modified for both

ordering and reformulation (compare equations 11 and 12 to

equations 4 and 6).

7.3 Reformulation for Re-asking

Finally, another application of reformulation is for re-asking

questions. As discussed in Section 6, the purpose of re-asking

is to identify when a response may be in error, either during

or after the primary entry of a form instance. One way of

reducing the overhead associated with re-asking is to simplify

the re-asked questions. Observe that a re-ask question does

not have to illicit the true answer, but rather a corroborating

answer. For example, for the question age, a reformulated

re-ask question could be the discretization bucket in which

the age falls (e.g., 21–30). From the traditional data quality

assurance perspective, this technique enables dynamic cross-

validation questions based on contextualized error likelihood.

The actual mechanics of the reformulation process are the

same as before. Unlike the other applications of reformulation,

however, here we have an answer for which we can compute

error likelihood.

8 EVALUATION

We evaluated the benefits of USHER by simulating two data

entry scenarios to show how our system can improve data

quality. We focused our evaluation on the quality of our

model and its predictions. While we believe that the data

entry user interface can also benefit from value prediction,

as we discuss in Section 9, we factor out the human-computer

interaction concerns of form widget design by automatically

simulating user entry. As such, we set up experiments to

measure our models’ ability to predict users’ intended answers,

to catch artificially injected errors, and to reduce error using

reformulated questions. We first describe the experimental data

sets, and then present our simulation experiments and results.

8.1 Data Sets and Experimental Setup

We examine the benefits of USHER’s design using two data

sets, previously described in Section 3. The survey data set

comprises responses from a 1986 poll about race and politics

in the San Francisco-Oakland metropolitan area [31]. The UC

Berkeley Survey Research Center interviewed 1,113 persons

by random-digit telephone dialing. The patient data set was

collected from anonymized patient intake records at a rural

HIV/AIDS clinic in Tanzania. In total we had fifteen questions

for the survey and nine for the patient data. We discretized

continuous values using fixed-length intervals and treated the

absence of a response to a question as a separate value to be

predicted.

For both data sets, we randomly divided the available prior

submissions into training and test sets, split 80% to 20%,

respectively. For the survey, we had 891 training instances

and 222 test; for patients, 1,320 training and 330 test. We

performed structure learning and parameter estimation using

the training set. As described in Section 4, this resulted in the

graphical models shown in Figures 1 and 2. The test portion

of each dataset was then used for the data entry scenarios

presented below.

In our simulation experiments, we aim to verify hypotheses

regarding three components of our system: first, that our data-

driven question orderings ask the most uncertain questions

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 0, NO. 0, MONTH 2010 11

first, improving our ability to predict missing responses; sec-

ond, that our re-asking model is able to identify erroneous

responses accurately, so that we can target those questions

for verification; and third, that question reformulation is an

effective mechanism for trading off between improved data

quality and user effort.

8.2 Ordering

For the ordering experiment, we posit a scenario where the

data entry worker is interrupted while entering a form sub-

mission, and thus is unable to complete the entire instance.

Our goal is to measure how well we can predict those

remaining questions under four different question orderings:

USHER’s pre-computed static ordering, USHER’s dynamic

ordering (where the order can be adjusted in response to

individual question responses), the original form designer’s

ordering, and a random ordering. In each case, predictions

are made by computing the maximum position (mode) of the

probability distribution over un-entered questions, given the

known responses. Results are averaged over each instance in

the test set.

The left-hand graphs of Figure 7 measure the average

number of correctly predicted unfilled questions, as a function

of how many responses the data entry worker entered before

being interrupted. In each case, the USHER orderings are able

to predict question responses with greater accuracy than both

the original form ordering and a random ordering for most

truncation points. Similar relative performance is exhibited

when we measure the percentage of test set instances where

all unfilled questions are predicted correctly, as shown in the

right side of Figure 7.

The original form orderings tend to underperform their

USHER counterparts. Human form designers typically do not

optimize for asking the most difficult questions first, instead

often focusing on boilerplate material at the beginning of a

form. Such design methodology does not optimize for greedy

information gain.

As expected, between the two USHER approaches, the

dynamic ordering yields slightly greater predictive power than

the static ordering. Because the dynamic approach is able

to adapt the form to the data being entered, it can focus

its question selection on high-uncertainty questions specific

to the current form instance. In contrast, the static approach

effectively averages over all possible uncertainty paths.

8.2.1 Re-asking

For the re-asking experiment, our hypothetical scenario is one

where the data entry worker enters a complete form instance,

but with erroneous values for some question responses.7

Specifically, we assume that for each data value the data entry

worker has some fixed chance p of making a mistake. When a

mistake occurs, we assume that an erroneous value is chosen

uniformly at random. Once the entire instance is entered, we

feed the entered values to our error model and compute the

7. Our experiments here do not include simulations with in-flight re-asking,
as quantifying the benefit of re-asking during entry – question recency — is
a substantial human factors research question that is left as future work.

probability of error for each question. We then re-ask the

questions with the highest error probabilities, and measure

whether we chose to re-ask the questions that were actually

wrong. Results are averaged over 10 random trials for each

test set instance.

Figure 8 plots the percentage of instances where we chose

to re-ask all of the erroneous questions, as a function of the

number of questions that are re-asked, for error probabilities

of 0.05, 0.1, and 0.2. In each case, our error model is able

to make significantly better choices about which questions to

re-ask than a random baseline. In fact, for p = 0.05, which

is a representative error rate that is observed in the field [7],

USHER successfully re-asks all errors over 80% of the time

within the first three questions in both data sets. We observe

that the traditional approach of double entry corresponds to

re-asking every question; under reasonable assumptions about

the occurrence of errors, our model is able to achieve the same

result of identifying all erroneous responses at a substantially

reduced cost.

8.2.2 Reformulation

For the reformulation experiment, we simulate form filling

with a background error rate and time cost in order to evaluate

the impact of reformulated questions. During simulated entry,

when a possible response a is at the mode position of the

conditional probability distribution and has a likelihood greater

than a threshold t, we ask whether the answer is a as a

reformulated binary question. If a is not the true answer, we

must re-ask the full question. Results are averaged over each

instance in the test set.

Before discussing these results, we motivate the choice of

error rates and costs functions that we employ in this experi-

ment. As mentioned in Section 7, the intuition behind question

reformulation is grounded in prior literature, specifically the

notion that simpler questions enjoy both lower error rate and

user effort. However, the downside with reformulation is that

entry forms may cost more to complete, due to reformulated

questions with negative responses.

In order to bootstrap this experiment, we need to derive

a representative set of error rates and entry costs that vary

with the complexity of a question. Previous work [30], [32]

has shown that both entry time and error rate increase as a

function of interface complexity. In particular, Fitts’ Law [32]

describes the time complexity of interface usage via an index

of complexity (ID), measured in bits as log(A/W + 1). This

is a logarithmic function of the ratio between target size W
and target distance A. Mapping this to some typical data

entry widgets such as radio-buttons and drop-down menus,

where W is fixed and A increases linearly with the number

of selections, we model time cost as log(D) where D is the

domain cardinality of the answer. In other words, time cost

grows with how many bits it takes to encode the answer. For

our experiments, we set the endpoints at 2 seconds for D = 2
up to 4 seconds for D = 128.

We also increase error probabilities logarithmically as a

function of domain cardinality D, relying on the intuition that

error will also tend to increase as complexity increases [30].

Our error rates vary from 1% for D = 2 to 5% for D = 128.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 0, NO. 0, MONTH 2010 12

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of inputted fields

%
 r

e
m

a
in

in
g

 f
ie

ld
s
 p

re
d

ic
te

d Survey Dataset

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of inputted fields

A
ll

re
m

a
in

in
g

 f
ie

ld
s
 p

re
d

ic
te

d

Survey Dataset

1 2 3 4 5 6 7 8
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of inputted fields

%
 r

e
m

a
in

in
g

 f
ie

ld
s
 p

re
d

ic
te

d Patient Dataset

1 2 3 4 5 6 7 8
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Number of inputted fields
A

ll
re

m
a

in
in

g
 f

ie
ld

s
 p

re
d

ic
te

d

Patient Dataset

Dynamic Reordering

Static Ordering

Original Ordering

Random

Fig. 7. Results of the ordering simulation experiment. In each case, the x-axis measures how many questions are filled

before the submission is truncated. In the charts on the left side, the y-axis plots the average proportion of remaining

question whose responses are predicted correctly. In the charts on the right side, the y-axis plots the proportion of

form instances for which all remaining questions are predicted correctly. Results for the survey data are shown at top,

and for the HIV/AIDS data at bottom.

We do not claim the generalizability of these specific

numbers, which are derived from a set of strong assumptions.

Rather, the values we have selected are representative for

studying the general trends of the tradeoff between data quality

and cost that re-asking enables, and are in line with typical

values observed in the field [7]. Furthermore, we attempted

this experiment with other error and cost parameters and found

similar results.

The results of question reformulation can be found in

Figure 9. In the pair of graphs entitled A, we measure the

error rate over reformulation thresholds for each dataset. Our

results confirm the hypothesis that the greater the number

of additional reformulated questions we ask, the lower the

error rate. In the pair of graphs entitled B, we observe that

as the selectivity (threshold) of reformulation goes up, the

likelihood that we pick the correct answer in reformulation

also rises. Observe that reformulation accuracy is greater than

80% and 95% for the survey and patient datasets, respectively,

at a threshold of 0.8. In the pair of graphs entitled C, we

see an unexpected result: entry with reformulation features

a time cost that quickly converges with, and in the case

of the patient dataset, dips below that of standard entry, at

thresholds beyond 0.6. Finally, in the pair of graphs entitled D,

we summarize the time cost incurred by additional questions

versus the time savings of the simpler reformulated questions.

Of course, given our assumptions, we cannot make a strong

conclusion about the cost of question reformulation. Rather,

the important takeaway is that the decrease in effort won by

correct reformulations can help to offset the increase due to

incorrect reformulations.

9 DISCUSSION: DYNAMIC INTERFACES FOR

DATA ENTRY

In the sections above, we described how USHER uses statistical

information traditionally associated with offline data cleaning

to improve interactive data entry via question ordering and

re-asking. This raises questions about the human-computer

interactions inherent in electronic form-filling, which are typ-

ically device- and application-dependent. In one application,

we are interested in how data quality interactions play out on

mobile devices in developing countries, as in the Tanzanian

patient forms we examined above. Similar questions arise

in traditional online forms like web surveys. In this section

we outline some design opportunities that arise from the

probabilistic power of the models and algorithms in USHER.

We leave the investigation of specific interface designs and

their evaluation in various contexts to future work.

While an interactive USHER-based interface is presenting

questions (either one-by-one or in groups), it can infer a

probability for each possible answer to the next question;

those probabilities are contextualized (conditioned) by previ-

ous responses. The resulting quantitative probabilities can be

exposed to users in different manners and at different times.

We present some of these design options in the following:

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 0, NO. 0, MONTH 2010 13

0 1 2 3 4 5 6 7 8 9 101112131415
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of questions re−asked

%
 s

u
c
c
e
s
s
fu

l
tr

ia
ls

Survey dataset, error prob = 0.05

0 1 2 3 4 5 6 7 8 9 101112131415
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of questions re−asked

%
 s

u
c
c
e
s
s
fu

l
tr

ia
ls

Survey dataset, error prob = 0.1

0 1 2 3 4 5 6 7 8 9 101112131415
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of questions re−asked

%
 s

u
c
c
e
s
s
fu

l
tr

ia
ls

Survey dataset, error prob = 0.2

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of questions re−asked

%
 s

u
c
c
e
s
s
fu

l
tr

ia
ls

Patient dataset, error prob = 0.05

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of questions re−asked

%
 s

u
c
c
e
s
s
fu

l
tr

ia
ls

Patient dataset, error prob = 0.1

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of questions re−asked

%
 s

u
c
c
e
s
s
fu

l
tr

ia
ls

Patient dataset, error prob = 0.2

Usher

Random

Fig. 8. Results of the re-asking simulation experiment. In each case, the x-axis measures how many questions we are

allowed to re-ask, and the y-axis measures whether we correctly identify all erroneous questions within that number of

re-asks. The error probability indicates the rate at which we simulate errors in the original data. Results for the survey

data are shown at top, and for the HIV/AIDS data at bottom.

1) Time of exposure: pre- and post-entry. Before entry,

Usher’s probabilistic model can be used to improve data

entry speed by adjusting the friction of entering different

answers: likely results can be made easy or attractive to

enter, while unlikely results can be made to require more

work. One example of this is the previously described

reformulation technique. Additional examples of data-

driven variance in friction include type-ahead mecha-

nisms in textfields, “popular choice” items repeated at

the top of drop-down lists, and direct decoration (e.g.,

coloring or font-size) of each choice in accordance with

its probability. A downside of beforehand exposure of

answer probabilities is the potential to bias answers. Al-

ternatively, probabilities may be exposed in the interface

only after the user selects an answer. This becomes a

form of assessment — for example, by flagging unlikely

choices as potential outliers. This can be seen as a

soft, probabilistic version of the constraint violation

visualizations commonly found in web forms (e.g., the

red star that often shows up next to forbidden or missing

entries). Post hoc assessment arguably has less of a

biasing effect than friction. This is both because users

choose initial answers without knowledge of the model’s

predictions, and because users may be less likely to

modify previous answers than change their minds before

entry.

2) Explicitness of exposure: Feedback mechanisms in

adaptive interfaces vary in terms of how explicitly

they intervene in the user’s task. Adaptations can be

considered elective versus mandatory. For instance, a

drop-down menu with items sorted based on likelihood

is mandatory with a high level of friction; whereas, a

“split” drop-down menu, as mentioned above, is elective

— the user can choose to ignore the popular choices.

Another important consideration is the cognitive com-

plexity of the feedback. For instance, when encoding

expected values into a set of radio buttons, we can

directly show the numeric probability of each choice,

forcing a user to interpret these discrete probabilities.

Alternatively, we can scale the opacity of answer labels

— giving the user an indication of relative salience,

without the need for interpretation. Even more subtly,

we can dynamically adjust the size of answer labels’

clickable regions — similar to the adjustments made by

the iPhone’s soft keyboard in response to the likelihood

of various letters.

3) Contextualization of interface: USHER uses condi-

tional probabilities to assess the likelihood of subsequent

answers. However, this is not necessarily intuitive to

a user. For example, consider a question asking for

favorite beverage, where the most likely answers shown

are milk and apple juice. This might be surprising in the

abstract, but would be less so in a case where a previous

question had identified the age of the person in question

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 0, NO. 0, MONTH 2010 14

0 0.2 0.4 0.6 0.8 1
0

0.006

0.012

0.018

0.024

0.03

Reformulation threshold

E
rr

o
r

ra
te

Error rate − Survey

0 0.2 0.4 0.6 0.8 1
0

0.006

0.012

0.018

0.024

0.03

Reformulation threshold

E
rr

o
r

ra
te

Error rate − Patient

Reformulated

Standard

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Reformulation threshold

P
ro

p
o

rt
io

n
 s

u
c
c
e

s
s
fu

l Reformulation accuracy − Survey

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Reformulation threshold

P
ro

p
o

rt
io

n
 s

u
c
c
e

s
s
fu

l Reformulation accuracy − Patient

0 0.2 0.4 0.6 0.8 1
30

36

42

48

54

60

Reformulation threshold

T
im

e
 c

o
s
t

(s
e

c
)

Reformulation time cost − Survey

0 0.2 0.4 0.6 0.8 1
20

23

26

29

32

35

Reformulation threshold

T
im

e
 c

o
s
t

(s
e

c
)

Reformulation time cost − Patient

Reformulated

Standard

0 0.2 0.4 0.6 0.8 1
−15

−10

−5

0

5

10

15

Reformulation threshold

T
im

e
 d

if
fe

re
n

c
e

 (
s
e

c
)

Reformulation efficiency − Survey

0 0.2 0.4 0.6 0.8 1
−8

−4

0

4

8

12

Reformulation threshold

T
im

e
 d

if
fe

re
n

c
e

 (
s
e

c
)

Reformulation efficiency − Patient

Cost of incorrect

Gain of correct

Average change

A

B

C

D

Fig. 9. Results of the question reformulation experiment. In each chart, the x-axis shows the reformulation thresholds;

when the threshold = 1, no question is reformulated. A shows the overall error rate between reformulated and standard

entry. B shows the likelihood that a reformulated answer was, in fact, the correct answer. C shows the impact of

reformulation on user effort, measured as time — average number of seconds per form. D shows the gain/loss in

effort due to when reformulation is correct vs incorrect.

to be under 5 years old. The way that the interface

communicates the context of the current probabilities is

an interesting design consideration. For example, “type-

ahead” text interfaces have this flavor, showing the likely

suffix of a word contextualized by the previously-entered

prefix. More generally, USHER makes it possible to show

a history of already-entered answers that correlate highly

with the value at hand.

Note that these design discussions are not specifically tied to

any particular widgets. In Figure 10 we show some examples

of user interface widgets that have been adapted using informa-

tion provided by USHER’s probabilistic model: the drop-down

menu in part A features first an elective split-menu adaptation

before entry and a color-encoded value assessment after entry;

the textfield in part B shows type-ahead suggestions ordered

by likelihood, thus decreasing the physical distance (a form

of friction) for more-likely values; the radio buttons in part C

directly communicate probabilities to the user.

While these broad design properties help clarify the poten-

tial user experience benefits of USHER’s data-driven philoso-

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 0, NO. 0, MONTH 2010 15

Fig. 10. Mockups of some simple dynamic data entry widgets illustrating various design options.

phy, there are clearly many remaining questions about how

to do this embedding effectively for different settings and

users. Those questions are beyond the scope of this paper.

In separate work, we used Ushers predictive ability to design

intelligent user interface adaptations, studied them with data

entry clerks in a rural Ugandan health clinic, and show that

our our adaptations have the potential to reduce error (by up

to 78%) [33].

10 DISCUSSION AND FUTURE WORK

In this paper, we have shown that a probabilistic approach can

be used to design intelligent data entry forms that promote high

data quality. USHER leverages data-driven insights to automate

multiple steps in the data entry pipeline. Before entry, we find

an ordering of form fields that promotes rapid information

capture, driven by a greedy information gain principle, and

can statically reformulate questions to promote more accurate

responses. During entry, we dynamically adapt the form based

on entered values, facilitating re-asking, reformulation, and

real-time interface feedback in the sprit of providing appro-

priate entry friction. After entry, we automatically identify

possibly erroneous inputs, guided by contextualized error

likelihoods, and re-ask those questions, possibly reformulated,

to verify their correctness. Our simulated empirical evalua-

tions demonstrate the data quality benefits of each of these

components: question ordering, reformulation and re-asking.

The USHER system we have presented is a cohesive synthe-

sis of several disparate approaches to improving data quality

for data entry. The three major components of the system —

ordering, re-asking, and reformulation — can all be applied

under various guises before, during, and after data entry. This

suggests a principled roadmap for future research in data entry.

For example, one combination we have not explored here is re-

asking before entry. At first glance this may appear strange, but

in fact that is essentially the role that cross-validation questions

in paper forms serve, as pre-emptive reformulated re-asked

questions. Translating such static cross-validation questions to

dynamic forms is a potential direction of future work.

Another major piece of future work alluded to in Section 9

is to study how our probabilistic model can inform effective

adaptations of the user interface during data entry. We intend

to answer this problem in greater depth through user studies

and field deployments of our system.

We can also extend this work by enriching the underlying

probabilistic formalism. Our current probabilistic approach

assumes that every question is discrete and takes on a series

of unrelated values. Relaxing these assumptions would make

for a potentially more accurate predictive model for many

domains. Additionally, we would want to consider models that

reflect temporal changes in the underlying data. Our present

error model makes strong assumptions both about how errors

are distributed and what errors look like. On that front, an

interesting line of future work would be to learn a model of

data entry errors and adapt our system to catch them.

Finally, we are in the process of measuring the practical

impact of our system, by piloting USHER with our field part-

ners, the United Nations Development Program’s Millennium

Villages Project [34] in Uganda, and a community health

care program in Tanzania. These organizations’ data quality

concerns were the original motivation for this work and thus

serve as an important litmus test for our system.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 0, NO. 0, MONTH 2010 16

ACKNOWLEDGMENTS

The authors thank Maneesh Agrawala, Yaw Anokwa, Michael

Bernstein, S.R.K. Branavan, Tyson Condie, Heather Dolan,

Jeff Heer, Max van Kleek, Neal Lesh, Alice Lin, Jamie

Lockwood, Bob McCarthy, Tom Piazza, Christine Robson

and the anonymous reviewers for their helpful comments and

suggestions. We acknowledge the Yahoo Labs Technology

for Good Fellowship, the Natural Sciences and Engineering

Research Council of Canada, the National Science Foundation

Graduate Fellowship, and NSF Grant 0713661.

REFERENCES

[1] T. Dasu and T. Johnson, Exploratory Data Mining and Data Cleaning.
Wiley Series in Probability and Statistics, 2003.

[2] C. Batini and M. Scannapieco, Data Quality: Concepts, Methodologies

and Techniques. Springer, 2006.

[3] R. M. Groves, F. J. Fowler, M. P. Couper, J. M. Lepkowski, E. Singer,
and R. Tourangeau, Survey Methodology. Wiley-Interscience, 2004.

[4] J. Lee. (2003) Address to WHO staff. [Online]. Available: http:
//www.who.int/dg/lee/speeches/2003/21 07/en

[5] J. V. D. Broeck, M. Mackay, N. Mpontshane, A. K. K. Luabeya,
M. Chhagan, and M. L. Bennish, “Maintaining data integrity in a rural
clinical trial,” Controlled Clinical Trials, 2007.

[6] R. McCarthy and T. Piazza, “Personal interview,” University of Califor-
nia at Berkeley Survey Research Center, 2009.

[7] S. Patnaik, E. Brunskill, and W. Thies, “Evaluating the accuracy of data
collection on mobile phones: A study of forms, sms, and voice,” in
ICTD, 2009.

[8] J. M. Hellerstein, “Quantitative data cleaning for large databases,”
United Nations Economic Commission for Europe (UNECE), 2008.

[9] A. Ali and C. Meek, “Predictive models of form filling,” Microsoft
Research, Tech. Rep. MSR-TR-2009-1, Jan. 2009.

[10] L. A. Hermens and J. C. Schlimmer, “A machine-learning apprentice for
the completion of repetitive forms,” IEEE Expert: Intelligent Systems

and Their Applications, vol. 9, no. 1, 1994.

[11] D. Lee and C. Tsatsoulis, “Intelligent data entry assistant for xml using
ensemble learning,” in In proc. ACM IUI, 2005.

[12] J. C. Schlimmer and P. C. Wells, “Quantitative results comparing
three intelligent interfaces for information capture,” Journal of Artificial

Intelligence Research, vol. 5, 1996.

[13] S. S. J.R. Warren, A. Davidovic and P. Bolton, “Mediface: anticipative
data entry interface for general practitioners,” in In proc. of OzCHI,
1998.

[14] J. Warren and P. Bolton, “Intelligent split menus for data entry: a
simulation study in general practice medicine,” J Amer Med Inform

Assoc, 1999.

[15] Y. Yu, J. A. Stamberger, A. Manoharan, and A. Paepcke, “Ecopod: a
mobile tool for community based biodiversity collection building,” in
JCDL, 2006.

[16] S. Day, P. Fayers, and D. Harvey, “Double data entry: what value, what
price?” Controlled Clinical Trials, 1998.

[17] D. W. King and R. Lashley, “A quantifiable alternative to double data
entry,” Controlled Clinical Trials, 2000.

[18] K. Kleinman, “Adaptive double data entry: a probabilistic tool for
choosing which forms to reenter,” Controlled Clinical Trials, 2001.

[19] K. L. Norman. Online survey design guide. [Online]. Available:
http://lap.umd.edu/survey design

[20] A. Hartemink. Banjo: Bayesian network inference with java objects.
[Online]. Available: http://www.cs.duke.edu/∼amink/software/banjo

[21] F. G. Cozman. JavaBayes - Bayesian Networks in Java. [Online].
Available: http://www.cs.cmu.edu/∼javabayes

[22] M. R. Cambridge. Infer.NET. [Online]. Available: http://research.
microsoft.com/en-us/um/cambridge/projects/infernet

[23] D. Heckerman, D. Geiger, and D. M. Chickering, “Learning bayesian
networks: The combination of knowledge and statistical data,” Machine

Learning, vol. 20, no. 3, pp. 197–243, 1995.

[24] F. Jelinek and R. L. Mercer, “Interpolated estimation of markov source
parameters from sparse data,” in Proceedings of the Workshop on Pattern

Recognition in Practice, 1980.

[25] C. M. Bishop, Pattern Recognition and Machine Learning. Springer,
2006.

[26] W. L. Buntine, “Operations for learning with graphical models,” Journal

of Artificial Intelligence Research, vol. 2, pp. 159–225, 1994.
[27] J. M. Bernardo and A. F. Smith, Bayesian Theory. Wiley Series in

Probability and Statistics, 2000.
[28] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles

and Techniques. MIT Press, 2009.
[29] T. P. Minka, “Expectation propagation for approximate bayesian infer-

ence,” in Proceedings of the Conference in Uncertainty in Artificial

Intelligence, 2001.
[30] J. O. Wobbrock, E. Cutrell, S. Harada, and I. S. MacKenzie, “An error

model for pointing based on fitts’ law,” in CHI ’08: Proceeding of the

twenty-sixth annual SIGCHI conference on Human factors in computing

systems. New York, NY, USA: ACM, 2008, pp. 1613–1622.
[31] U. C. Berkeley. Survey documentation and analysis. [Online]. Available:

http://sda.berkeley.edu
[32] P. M. Fitts, “The information capacity of the human motor system in

controlling the amplitude of movement.” J. of Exp. Psychology, vol. 47,
no. 6, 1954.

[33] K. Chen, T. Parikh, and J. M. Hellerstein, “Designing adaptive feed-
back for improving data entry accuracy,” in Proceedings of the ACM

Symposium on User Interface Software and Technology, 2010.
[34] The millennium villages project. [Online]. Available: http://www.

millenniumvillages.org

Kuang Chen Kuang Chen is a Ph.D. candidate at the University of Cal-
ifornia, Berkeley. His research focuses on data management systems
that help low-resource organizations in the developing world, aiming
to improve local practices in data collection, data quality, information
integration and analytics. He holds a B.S. in Computer Science and B.A.
in Comparative History of Ideas from the University of Washington, and
a M.S. in Computer Science from the University of California, Berkeley.

Harr Chen Harr Chen is a Ph.D. candidate at the Massachusetts
Institute of Technology. His research interests are in statistical natural
language processing, information retrieval, and machine learning. He
holds B.S. degrees summa cum laude in Computer Science and in Ap-
plied and Computational Mathematical Sciences from the University of
Washington, and a S.M. in Computer Science from the Massachusetts
Institute of Technology. He is a recipient of the National Science Foun-
dation Graduate Fellowship and the National Defense Science and
Engineering Graduate Fellowship.

Neil Conway Neil Conway is currently pursuing a PhD degree in
Computer Science at the University of California, Berkeley. He holds
a B.Sc. from Queen’s University, and a M.Sc. from the University of
California, Berkeley. His research interests include distributed systems,
logic programming, and large-scale data management.

Joseph M. Hellerstein Joseph M. Hellerstein is a Professor of Com-
puter Science at the University of California, Berkeley, whose work
focuses on data-centric systems and the way they drive computing. He
is an ACM Fellow, an Alfred P. Sloan Research Fellow and the recipient
of two ACM-SIGMOD ”Test of Time” awards for his research. In 2010,
Fortune Magazine included him in their list of 50 smartest people in
technology , and Technology Review magazine included his work on
Distributed Programming on their 2010 TR10 list of the 10 technologies
”most likely to change our world”. Key ideas from his research have
been incorporated into commercial and open-source software from
IBM, Oracle, and PostgreSQL. He is a past director of Intel Research
Berkeley, and currently serves on the technical advisory boards of a
number of computing and Internet companies.

Tapan S. Parikh Tapan Parikh is an assistant professor at the UC Berke-
ley School of Information. Tapan’s research interests include human-
computer interaction (HCI), mobile computing and information systems
for microfinance, smallholder agriculture and global health. He holds a
Sc.B. degree in Molecular Modeling with Honors from Brown University,
and M.S. and Ph.D. degrees in Computer Science from the University
of Washington. Tapan was also named Technology Review magazine’s
Humanitarian of the Year in 2007.

