Consistency Analysis in Bloom:
A CALM and Collected Approach

Peter Alvaro, Neil Conway, William R.
Marczak, Joseph M. Hellerstein

Status Quo

Distributed programming: increasingly
common

— Cloud computing, mobile

— No longer just for the experts!

Distributed programming: still very difficult
— Parallelism, asynchrony, partial failure, ...

Toward Disorderly Programming

Imperative languages are “ordered by default”
— Data: ordered array of cells
— Computation: ordered sequence of instructions
— This is a poor fit for distributed computing!

Instead: disorderly programming
— Data: unordered collections (sets)
— Computation: unordered bundle of declarative rules
— Ordering constructs provided when needed
— Success stories: MapReduce, parallel SQL

Outline

1. A new language: Bloom
— Disorderly programming for distributed systems

2. Aset of analysis tools: CALM

— When is ordering needed in a distributed
program?

Bloom

New language for distributed programming

— Prototype implementation as a Ruby DSL
* Bud: "Bloom Under Development”

— Fully declarative semantics
* Datalog + state update and asynchronous messages

— Rule-based language + some ideas from OOP
» Abstract interfaces, modularity, encapsulation

Operational Model

Basic primitives:
— Local computation (Datalog fixpoint)
— State update
— Asynchronous messaging

Local Updates
Next

System Events

Network

Network

Bloom Statements

<collection>
table persistent
scratch transient
channel network transient
periodic scheduled transient
interface interface transient

<temporal op>

now
next
delete (at next)

async

<expr>

map, flat_map
reduce, group
join, outerjoin

empty?, include?

Abstract Delivery Protocol

module DeliveryProtocol
include BudModule

state do
interface input, :pipe_in,
[:dst, :src,
interface output, :pipe_sent,
[:dst, :src,
end
end

:ident] => [:payload]

:ident] => [:payload]

Best-Effort Delivery

module BestEffortDelivery

include DeliveryProtocol Location Specifier

state do g////

channel :pipe_chan, [:@dst, :src,
end

declare
def snd

pipe_chan <~ pipe_in
end

declare
def done
pipe_sent <= pipe_in
end
end

:ident] => [:payload]

Reliable

Delivery

module ReliableDelivery
include DeliveryProtocol
import BestEffortDelivery => :bed

state do
table :buf,
[:dst, :src, :id] => [:payload]
channel :ack, [:@src, :dst, :id]
periodic :clock, 2

end

declare
def do_send
buf <= pipe_in
bed.pipe_in <= pipe_in
end

declare

def retry_timer
do_retry = join [buf, clock]
retry_msg = do_retry.map {|b, c| b}
bed.pipe_in <= retry_msg

end

declare
def rcv
ack <~ bed.pipe_chan.map
{|p| [p.src, p.dst, p.idl}
end

declare
def done
got_ack = join [ack, buf],
l[ack.id, buf.id]
msg_done = got_ack.map {|a, b| b}

pipe_sent <= msg_done
buf <—- msg_done
end
end

Outline

1. A new language: Bloom
— Disorderly programming for distributed systems

2. A set of analysis tools: CALM

— When is ordering needed in a distributed
program?

Review: Monotonicity

Monotonic Logic Non-Monotonic Logic

* The more you know, * New inputs might
The more you know require retracting

* e.g., map, filter, join previous conclusions

* To have a “certain”
conclusion, must seal
Input set

* e.g., aggregation,
negation

Monotonicity and Order

Monotonic:
— Output is insensitive to message delivery order

Non-Monotonic:

— Ordering may be needed for consistent results
* Everyone must agree on the contents of the input set

— Simple analysis: identify points of order

* Non-monotonic operators fed by asynchronous
messages

Distributed Consistency

Strong Consistency:

— Enforce total order over messages
* E.g., using Paxos, Two-Phase Commit, GCS, ...

Loose Consistency:

— Write application to tolerate any sequence of
message orderings
* E.g., idempotent, commutative, associative operations
* Application-specific compensation logic

Practical Implications of CALM

Strong Consistency:
— |dentify points of order without coordination logic

— Rewrite program to adjust points of order
* Push coordination to “cheap” parts of the dataflow
* Coordination as an optimization problem?

Loose Consistency:

— Track inconsistency “taint” through the program

* Ensure that inconsistency is resolved by applying
compensation logic

Recap

1. Orderis a scarce resource!
— Help the programmer use it wisely

2. What is coordination for?

— Consistent results from non-monotonic logic
3. Draw user’s attention to points of order

— Resolve via coordination or compensation

4. Bloom: pragmatic rule-based language for
distributed programming

More Info

http://bloom.cs.berkeley.edu

Bud: alpha release shortly

Initial writeups:
— CIDR'11 (overview, CALM)
— Datalog 2.0 (declarative semantics)
— PODS'11 (in submission)
— PODS'10 keynote (conjectures about CALM)

Thanks to:
MSR, IBM Research, Yahoo! Research, NSF, AFOSR

Applying CALM: Coordination

* Given point of order, can we inject
coordination logic automatically?

* Can we recognize equivalent choices for
coordination?

— Coordination strategy as an optimization problem

Applying CALM: Compensation

 Taint tracking: ensure that before output of a
point of order is used, it is resolved via
compensation logic

* Memories, guesses and apologies (Helland)
— Common pattern for loose consistency
— How can we help the programmer?

