Cloud Programming:
From Doom and Gloom to
BOOM and Bloom

Neil Conway
UC Berkeley

Joint work with Peter Alvaro, Ras Bodik, Tyson Condie,
Joseph M. Hellerstein, David Maier (PSU), William R. Marczak,

and Russell Sears (Yahoo! Research)

Datalog 2.0 Workshop

Cloud Computing: The Next Great
Computing Platform

amazon 43 WindowsAzure GOUS[Q ﬁrceﬁgfﬂ;mm
mbsefvicesm App Engine T

The Problem

Writing reliable,
scalable distributed
software remains
extremely difficult.

Doom and Gloom!

“..when we start talking
about parallelism and
ease of use of truly
parallel computers, we're
talking about a problem
that’s as hard as any that
computer science has
faced | would be
panicked if | were in
industry.”

-- John Hennessey,
Stanford

A Ray of Light

 We understand data-parallel computing
— MapReduce, parallel DBs, etc.

e Can we take a hard problem and transform it
into an easy one?

Everything is Data

* Distributed computing is all about state
— System state
— Session state
— Protocol state
— User and security-related state
— ... and of course, the actual “data”

* Computing = Creating, updating, and
communicating that state

Datalog to the Rescue!

1. Data-centric programming
— Explicit, uniform state
representation: relations
2. High-level declarative
gueries

— Datalog + asynchrony + state
update

Outline

1. The BOOM Project
— Cloud Computing stack built w/ distributed logic

— BOOM Analytics: MapReduce and DFS in Overlog
2. Dedalus: Datalog in Time (and Space)

3. (Toward) The Bloom Language
— Distributed Logic for Joe the Programmer

The BOOM Project

* Berkeley Orders Of Magnitude

— OOM more scale,
OOM less code

— Can we build Google in 10k
LOC?

e Build “Real Systems” in
distributed logic

— Begin w/ an existing variant of
Datalog (“Overlog”)

— Inform the design of a new
language for distributed
computing (Bloom)

BOOM Analytics

e Typical “Big Data” stack: MapReduce (Hadoop)
+ distributed file system (HDFS)

* We tried two approaches:

— HDFS: clean-slate rewrite

— Hadoop: replace job scheduling logic w/ Overlog
* Goals

1. Replicate existing functionality
2. Add Hard Stuff (and make it look easy!)

Overlog: Distributed Datalog

e Originally designed for routing protocols and
overlay networks (Loo et al., SIGMOD’06)

— Routing = recursive query over distributed DB
* Datalog w/ aggregation, negation, functions
e Distribution = horizontal partitioning of tables

— Data placement induces communication

Yet Another Transitive Closure

link(X, Y, C);

path(X, Y, C) :- link(X, Y, C);

path(X, Z, C1 + C2) :- link(X, Y, C1),
path(Y, Z, C2);

mincost(X, Z, min<C>) :- path(X, Z, C);

Overlog Example

ink(@X, Y, C);

nath(@X, Y, C) :- link(@X, Y, C);

nath(@X, Z, C1 + C2) :- link(@X, Y, C1),
path(@Y, Z, C2);

mincost(@X, Z, min<C>) :- path(@X, Z, C);

Overlog Timestep Model

Network Network
.. Mach| ne
Boundary :

Datalog

Local, atomic
computation

Hadoop Distributed File System

* Based on the Google
File System (SOSP’03)

— Large files, sequential
workloads, append-

Metadata Protocol

Data Protocol

only
— Used by YahOO I , Heartbeat Protocol
Facebook, etc. E\%
e Chunks 3x replicated o

at data nodes for fault
tolerance

BOOM-FS

* Hybrid system
— Complex logic:

Metadata Protocol Overlog

Overlog —

— Performance-
critical (but D;{’
simple!): Java J;% Heartbeat Protoco ContotFrotoco

e Clean separation E\%
between policy

and mechanism

BOOM-FES Example: State

Represent file system metadata with relations.

ame o aioans

file Files filelD, parentID, name, isDir
fgpath Fully-qualified path names filelD, path

fchunk Chunks per file chunklD, filelD

datanode DataNode heartbeats nodeAddr, lastHbTime

hb_chunk Chunk heartbeats nodeAddr, chunkID, length

BOOM-FS Example: Query

Represent file system metadata with relations.

// Base case: root directory has null parent
fgpath(Fileld, Path) :-
file(Fileld, FParentld, FName, IsDir),
IsDir = true, FParentld = null, Path ="/";

fqpath(Fileld, Path) :-
file(Fileld, FParentld, FName, _),
fqpath(FParentld, ParentPath),

// Do not add extra slash if parent is root dir
PathSep = (ParentPath ="/"?"":"/"),

Path = ParentPath + PathSep + FName;

BOOM-FS Example: Query

Distributed protocols: join between event
stream and local database

// "Is" for extant path => return listing for path

response(@Source, Requestld, true, DirListing) :-
request(@ Master, Requestld, Source, "Ls", Path),
fgpath(@Master, Fileld, Path),
directory_listing(@Master, Fileld, DirListing);

// "Is" for nonexistent path => error

response(@Source, Requestld, false, null) :-
request(@ Master, Requestld, Source, "Ls", Path),
notin fqpath(@Master, _, Path);

Comparison with Hadoop

Competitive performance (~20%)

________llinesoflava | Lines of Overlog

HDFS ~21,700 0
BOOM-FS 1,431 469

New Features:
1. Hot Standby for FS master nodes using Paxos
2. Partitioned FS master nodes for scalability
— ~1 day!
3. Monitoring, tracing, and invariant checking

Lessons from BOOM Analytics

* Overall, Overlog was a good fit for the task
— Concise programs for real features, easy evolution

e Data-centric design: language-independent

— Replication, partitioning, monitoring all involve
data management

— Node-local invariants are “cross-cutting” queries
 Specification is enforcement

* Policy vs. mechanism < Datalog vs. Java

Challenges from BOOM Analytics

* Poor perf, cryptic syntax, little/no tool support
— Easy to fix!
* Many bugs related to updating state

— Ambiguous semantics (in Overlog)

* We avoided distributed queries
— “The global database is a lie!”

— Hand-coding protocols vs. stating distributed
Invariants

Outline

1. The BOOM Project
— Cloud Computing stack built w/ distributed logic

— BOOM Analytics: MapReduce and DFS in Overlog
2. Dedalus: Datalog in Time (and Space)
3. (Toward) The Bloom Language

— Distributed Logic for Joe the Programmer

Dedalus

* Dedalus: a theoretical foundation for Bloom
* |[n Overlog, the Hard Stuff happens between
time steps
— State update

— Asynchronous messaging

e Can we talk about the Hard Stuff with logic?

State Update

* Updates in Overlog: ugly, “outside” of logic
 Difficult to express common patterns

— Queues, sequencing

* Order doesn’t matter ... except when it does!

counter(@A, Val + 1) :- counter(@A, Val),
event(@A,);

Asynchronous Messaging

Overlog “@” notation describes space
Logical interpretation unclear:

p(@A, B) :- (@B, A);

Upon reflection, time is more fundamental
— Model failure with arbitrary delay

Discard illusion of global DB

Dedalus: Datalog in Time

(1) Deductive rule: (Pure Datalog)

p(AI B) . q(AI B);
(2) Inductive rule: (Constraint across “next” timestep)

p(A, B)@next :- q(A, B);

(3) Async rule: (Constraint across arbitrary timesteps)

p(A, B)@async:- q(A, B);

Dedalus: Datalog in Time

. All terms in body
(1) Deductive rule: (Pure Datalog) have same time

p(A, B,S):-q(A, B, T), T=S;

(2) Inductive rule: (Constraint across “next” timestep)
p(A, B, S) :- q(A, B, T), successor(T, S);

(3) Async rule: (Constraint across arbitrary timesteps)

p(A, B, S) :- q(A, B, T), time(S),
choose((A, B, T), (S));

State Update in Dedalus

p (A, B)@next :- p (A, B), notin p_neg(A, B);

p(1,2)@101;
p(1,3)@102;

p_neg(1, 2)@300; gy PN
01 [

02 [

-

I I

-

300
301

Counters in Dedalus

counter(A, Val + 1)@next :-
counter(A, Val),
event(A,);

counter(A, Val)@next :-
counter(A, Val),
notin event(A,);

Asynchrony in Dedalus

Unreliable Broadcast:

sbcast(#Target, Sender, Message)@async :-
new_message(#Sender, Message),
members(#Sender, Target);

 More satisfactory logical interpretation
e Can build Lamport clocks, reliable broadcast, etc.
 What about “space”?

* Space is the unit of atomic deduction w/o
partial failure

Asynchrony in Dedalus

Project sender’s
local time

Unreliable Broadcast:

sbcast(#Target, Sender, N, Message)@async :-
new_message(#Sender, Message)@N,
members(#Sender, Target);

 More satisfactory logical interpretation
e Can build Lamport clocks, reliable broadcast, etc.
 What about “space”?

* Space is the unit of atomic deduction w/o
partial failure

Dedalus Summary

* Logical, model-theoretic semantics for two key
features of distributed systems
1. Mutable state
2. Asynchronous communication

e All facts are transient
— Persistence and state update are explicit

* |nitial correctness checks
1. Temporal stratifiability (“modular stratification in
time”)
2. Temporal safety (“eventual quiescence”)

Directions: Bloom

1. Bloom: Logic for Joe the Programmer
— Expose sets, map/reduce, and callbacks?

— Translation to Dedalus
2. Verification of Dedalus programs
3. Network-oriented optimization
4. Finding the right abstractions for Distributed
Computing

— Hand-coding protocols vs. stating distributed
Invariants

5. Parallelism and monotonicity?

Questions?

Thank you! http://declarativity.net

Initial Publications:
BOOM Analytics: EuroSys’10, Alvaro et al.
Paxos in Overlog: NetDB’09, Alvaro et al.
Dedalus: UCB TR #2009-173, Alvaro et al.

Temporal Stratifiability

Reduction to Datalog not syntactically
stratifiable:

p(X)@next :- p(X), notin p_neg(X);
p_neg(X) :- event(X, _), p(X);

