Cloud Programming:
From Doom and Gloom to
BOOM and Bloom

Peter Alvaro, Neil Conway

Faculty Recs: Joseph M. Hellerstein, Rastislav Bodik
Collaborators: Tyson Condie, Bill Marczak, Rusty Sears
UC Berkeley



Writing reliable, scalable distributed
software remains extremely difficult



Three Hardware Trends

1. Cloud Computing
2. Powerful, heterogeneous mobile clients
3. Many-Core



Implications

. Nearly every non-trivial program will be
physically distributed

. Increasingly heterogeneous clients,
unpredictable cloud environments

. Distributed programming will no longer be
confined to highly-trained experts



The Anatomy of a Distributed Program

* |n a typical distributed program, we see:
— Communication, messaging, serialization
— Event handling
— Concurrency, coordination
— Explicit fault tolerance, ad-hoc error handling

 What are we looking for?
— Correctness (safety, liveness, ...)
— Conformance to specification

— High-level performance properties; behavior under
network edge-cases



Data-Centric Programming

* Goal: Fundamentally raise the level of
abstraction for distributed programming

 MapReduce: data-centric batch programming
— Programmers apply transformations to data sets

 Can we apply a data-centric approach to
distributed programming in general?



Bloom and BOOM

. Bloom: A high-level, data-centric language
designed for distributed computing
. BOOM: Berkeley Orders of Magnitude

— OOM bigger systems in OOM less code
— Use Bloom to build real distributed systems



Agenda: Foundation

* Begin with a precise formal semantics

— Datalog w/ negation, state update, and non-
determinism

* |Include primitives for distributed computation

 Enable formal methods for distributed
programming

— Model checking, theorem proving, ...



Agenda: Engineering

1. Efficient, low-latency dataflow engine (C4)

2. Network-oriented continuous program
optimization

Automatically co-locate code and data
Adapt to current network and client conditions
Optimize for both power and performance

Leverage formal semantics: how does
distribution change program behavior?



Agenda: Language Design

* How to expose these concepts to developers?

— What are the right developer abstractions for
common distributed programs?

* Bloom language design goals:
1. Familiar syntax (list comprehensions, callbacks)
2. Integration with imperative languages
3. Modularity, encapsulation, and composition



Agenda: Validation

* How do we know that we’re solving real
problems?

— Build real systems
* |nitial work: BOOM Analytics
— Hadoop + HDFS in distributed logic
* Goal: Use Bloom to build a complete cloud

computing stack
— Google in 10KLOC?



Thank you!



