Dedalus:
Datalog in Time and Space

Peter Alvaro, Ras Bodik, Neil Conway, Joe
Hellerstein, David Maier (PSU), Bill Marczak,
and Rusty Sears (Yahoo! Research)

2010 Berkeley OSQ Retreat

Dedalus

* Dedalus is a declarative language for
distributed programming

* Grounded in our experiences using declarative
languages to build distributed systems
— Declarative Networking (2003-2008)
— The BOOM Project (2008-Present)

Outline

1. Context and Motivation
— Declarative Networking

— Declarative Systems: BOOM
— A taste of Overlog

2. Dedalus: Datalog in Time and Space
3. Future Directions and Open Problems

Declarative Networking

 Networking is about moving data from one location to
another
e Can we view networking as a distributed data
management problem?
— E.g., can we express a routing protocol as a distributed
qguery in a declarative language?

* Yes: transport protocols, routing protocols, sensor
networks, DHTSs, replication policies, distributed
snapshots, consensus protocols, ...

— Typically 10x reduction in code size

B.T. Loo, T. Condie, M. Garofalakis, D.E. Gay, J.M. Hellerstein, P. Maniatis, R.
Ramakrishnan, T. Roscoe, |. Stoica. Declarative Networking. CACM, 2009

Declarative Systems

* Focus has turned from protocols toward
distributed systems

— Larger programs
— More complex algorithms

e BOOM: Berkeley Orders Of Magnitude
— OOM more scale, OOM less code

— Goal: A complete cloud computing stack built
using declarative languages

— Could we build Google in 10 kLOC?

Overlog: Distributed Datalog

* Datalog: a recursive query language from the
deductive database community

— Defined over a static database

* Add state update, distributed queries
(communication)

Datalog Example

Rule Body
(conjunction of terms)

'path(X, Y, C) :- link(X, Y, C);
ruletead |[pPath(X, Z, C1 + C2) :- link(X, Y, C1),
Transitive path(Y, Z, CZ),

Closure

mincost(X, Z, min<C>) :- path(X, Z, C);

Overlog Example

Distributed
join

path(@X, Y, C) :- link(@X, Y, C);

path(@X, Z, C1 + C2) :- link(@X, Y, C1),
path(@Y, Z, C2);

mincost(@X, Z, min<C>) :- path(@X, Z, C);

Overlog Timestep Model

Network Network
.. Mach| ne
Boundary :

Datalog

Local, atomic
computation

Outline

1. Context and Motivation

— Declarative Networking
— Declarative Systems: BOOM
— A taste of Overlog

2. Dedalus: Datalog in Time and Space
3. Future Directions and Open Problems

Dedalus

* Datalog = The Good Stuff

— Precise semantics, established techniques for
optimization and evaluation

* |[n Overlog, the Hard Stuff happens between
time steps
— State update
— Asynchronous messaging

* Can we talk about the Hard Stuff with logic?

State Update

sequence(A, Val + 1) :- sequence(A, Val),
event(A);

How do we interpret this?

— Datalog: infinite database

— Overlog: runtime deletes old version of tuple
Overlog: ugly, “outside” of logic, ambiguous
— Semantics defined by the implementation
Hence, difficult to express common patterns
— Queues, sequencing

Order doesn’t matter ... except when it does!

Asynchronous Messaging

Logical interpretation unclear:

P(@A, B) :- q(@B, A);

Asynchronous Messaging

Logical interpretation unclear:

P(@A, B) :- q(@B, A);

* Overlog “@” notation describes space

* Upon reflection, time is more fundamental
— Model failure with arbitrary delay

Dedalus: Datalog in Time

(1) Deductive rule: (Pure Datalog)

p(A/ B) .- q(Ar B)/

(2) Inductive rule: (Constraint across “next” timestep)

p(A, B)@next :- q(A, B);

(3) Async rule: (Constraint across arbitrary timesteps)

p(A, B)@async:- q(A, B),

Dedalus: Datalog in Time

. All terms in body
(1) Deductive rule: (Pure Datalog) have same time

p(A, B,S):-q(A,B, T), T=S;

(2) Inductive rule: (Constraint across “next” timestep)
p(A, B, S) :- q(A, B, T), successor(T, S);

(3) Async rule: (Constraint across arbitrary timesteps)

p(A, B, S) :- q(A, B, T), time(S),
choose((A, B, T), (S));

State Update in Dedalus

p(A, B)@next :- p(A, B), notin p_del(A, B);

Example Trace: pr e e s e
P(1,2)@101; g —
102
p(1, 3)@102; - I
d |1 3 300. 300 _—
pdelit, @300 =

Sequences in Dedalus

sequence(A, Val + 1)@next :-
sequence(A, Val),
event(A);

sequence(A, Val)@next :-
sequence(A, Val),
notin event(A);

Asynchrony in Dedalus

Unreliable Broadcast in Dedalus:

sbcast(#Target, Sender, Message)@async :-
new_message(#Sender, Message),
members(#Sender, Target);

 More satisfactory logical interpretation
e Can build Lamport clocks, reliable broadcast, etc.
 What about “space”?

* Space is the unit of atomic deduction w/o
partial failure

Asynchrony in Dedalus

Unreliable Broadcast in Dedalus: Include sender’s

local time

shcast(#Target, Sender, T, Message)@asyn< :-
new_message(#Sender, Message) @T,
members(#Sender, Target) @T,

 More satisfactory logical interpretation
e Can build Lamport clocks, reliable broadcast, etc.
 What about “space”?

* Space is the unit of atomic deduction w/o
partial failure

Dedalus Summary

* Logical, model-theoretic semantics for two key
features of distributed systems

1. Mutable state
2. Asynchronous communication
* All facts are transient
— Persistence and state update are explicit

* Has been successful in clarifying the semantics
of our programs

Outline

1. Context and Motivation

— Declarative Networking
— Declarative Systems: BOOM
— A taste of Overlog

2. Dedalus: Datalog in Time and Space
3. Future Directions and Open Problems

Big Picture Agenda

1. Language

Overlog: concise code

Dedalus: precise semantics

C4.: efficient execution (new language runtime)
Bloom: friendly syntax, “mainstream” appeal

2. BOOM Project

Build more systems using logic (e.g., Cassandra)
Move up the stack? (Business logic, GUIs, ...)

Verification of Dedalus programs

* Premises:
— Program expressed as a set of logical implications
— All asynchrony/non-determinism is explicit
— “Close to the specification” but still executable

 Conclusion: easier verification?

— Programmer does (some) of the abstraction for us

 Can we integrate formal verification into the
development process?

Network-Oriented Optimization

Traditional compiler optimization is node-oriented

The big wins are in network-oriented optimizations

— Given program for n nodes, execute using m nodes
* Given $100, what is the best cluster configuration?

— Automatically colocate code and data

— Co-optimize application logic and network protocols
* E.g., if program transitions are commutative, consensus is cheaper

As cloud computing environments become more

complex and unpredictable, automatic optimization
will be crucial

Questions?

Thank you! http://boom.cs.berkeley.edu

Initial Publications:
BOOM Analytics: EuroSys’10, Alvaro et al.
Paxos in Overlog: NetDB’09, Alvaro et al.
Dedalus: UCB TR #2009-173, Alvaro et al.

