
Introduction to Hacking PostgreSQL
Neil Conway, Gavin Sherry

neilc@samurai.com, swm@alcove.com.au

Introduction to Hacking PostgreSQL – p. 1

Outline

1. Development environment

2. Architecture of PostgreSQL

3. Backend conventions and infrastructure

4. How to submit a patch

5. Example patch: adding WHEN qualification to triggers

Introduction to Hacking PostgreSQL – p. 2

Part 1: Development Environment

Most of the Postgres developers use Unix; you probably
should too

You’ll need to know C
Fortunately, C is easy

Unix systems programming knowledge is helpful,
depending on what you want to work on

Learning to understand how a complex system
functions is a skill in itself (“code reading”)

Introduction to Hacking PostgreSQL – p. 3

Development Tools

Basics: $CC, Bison, Flex, CVS, autotools, gdb
Configure flags: enable-depend, enable-debug,
enable-cassert

Consider CFLAGS=-O0 for easier debugging, but this
suppresses some classes of warnings

tags or cscope are essential
“What is the definition of this function/type?”
“What are all the call-sites of this function?”
src/tools/make_[ce]tags

ccache and distcc are useful, especially on slower
machines

valgrind can be useful for debugging memory errors

Introduction to Hacking PostgreSQL – p. 4

Text Editor

If you’re not using a good programmer’s text editor, start

Teach your editor to obey the Postgres coding
conventions:

Hard tabs, with a tab width of 4 spaces
Similar to Allman/BSD style; just copy the
surrounding code

Using the Postgres coding conventions makes it more
likely that your patch will be promptly reviewed and
applied

Introduction to Hacking PostgreSQL – p. 5

Part 2: PostgreSQL Architecture

Five main components:
1. The parser - parse the query string
2. The rewriter - apply rewrite rules
3. The optimizer - determine an efficient query plan
4. The executor - execute a query plan
5. The utility processor - process DDL like CREATE

TABLE

Introduction to Hacking PostgreSQL – p. 6

Architecture Diagram

Postgres backend
PostgresMain()

PARSE:
Parse query string
pg_parse_query()

ANALYZE:
Semantic analysis of query, transform to Query node

parse_analyze()

REWRITE:
Apply rewrite rules

pg_rewrite_queries()

UTILITY PROCESSOR:
Execute DDL

PortalRun() -> ProcessUtility()

PLAN:
Produce a query plan

pg_plan_queries()

EXECUTOR:
Execute DML

PortalRun() -> ExecutePlan()

Introduction to Hacking PostgreSQL – p. 7

The Parser

Lex and parse the query string submitted by the user
parser/gram.y has the guts; entry point is
parser/parser.c

Produces a “raw parsetree”: a linked list of parse nodes
Parse nodes are defined in
include/nodes/parsenodes.h

There is usually a simple mapping between grammar
productions and parse node structure

Introduction to Hacking PostgreSQL – p. 8

Semantic Analysis

In the parser itself, only syntactic analysis is done; basic
semantic checks are done in a subsequent “analysis
phase”

parser/analyze.c and related code under
parser/

Resolve column references, considering schema path
and query context

SELECT a, b, c FROM t1, t2, x.t3
WHERE x IN (SELECT t1 FROM b)

Verify that target schemas, tables and columns exist

Check that the types used in expressions are consistent

In general, check for errors that are impossible or
difficult to detect in the parser itself

Introduction to Hacking PostgreSQL – p. 9

Rewriter, Planner

The analysis phase produces a Query, which is the
query’s parse tree

The rewriter applies rewrite rules: view definitions and
ordinary rules. Input is a Query, output is zero or more
Querys

The planner takes a Query and produces a Plan,
which encodes how the query ought to be executed

Only needed for “optimizable” statements (INSERT,
DELETE, SELECT, UPDATE)

Introduction to Hacking PostgreSQL – p. 10

Executor, Utility Processor

DDL statements are “executed” via the utility processor,
which basically just calls the appropriate function for
each different kind of DDL statement

processUtility() in tcop/utility.c; the
implementation of the DDL statements is in
commands/

Optimizeable statements are processed via the
Executor: given a Plan, it executes the plan and
produces any resulting tuples

executor/; entry point is in execMain.c

Introduction to Hacking PostgreSQL – p. 11

Part 3: Common Idioms: Nodes

Postgres uses a very simple object system with support
for single inheritance. The root of the class hierarchy is
Node:
typedef struct typedef struct typedef struct

{ { {

NodeTag type; NodeTag type; Parent parent;

} Node; int a_field; int b_field;

} Parent; } Child;

This relies on a C trick: you can treat a Child * like a
Parent * since their initial fields are the same

The first field of any Node is a NodeTag, which can be
used to determine a Node’s specific type at runtime

Introduction to Hacking PostgreSQL – p. 12

Nodes, Cont.

Create a new Node: makeNode()

Run-time type testing via the IsA() macro

Test if two nodes are equal: equal()

Deep copy a node: copyObject()

Serialise a node to text: nodeToString()

Deserialise a node from text: stringToNode()

Introduction to Hacking PostgreSQL – p. 13

Nodes: Hints

When you modify a node or add a new node, remember
to update

nodes/equalfuncs.c

nodes/copyfuncs.c

You may have to update nodes/outfuncs.c if your
Node is to be serialised/deserialised

Grepping for references to the node’s type can be
helpful to make sure you don’t forget to update anything

Introduction to Hacking PostgreSQL – p. 14

Memory Management

Postgres uses hierarchical, region-based memory
management, and it absolutely rocks

backend/util/mmgr

Memory is allocated via palloc()

All allocations occur inside a memory context

Default memory context: CurrentMemoryContext

Introduction to Hacking PostgreSQL – p. 15

Memory Management, cont.

Allocations can be freed individually via pfree()

When a memory context is reset, all allocations in the
context are released

Resetting contexts is both faster and less
error-prone than releasing individual allocations

Contexts are arranged in a tree; deleting/resetting a
context deletes/resets its child contexts

Introduction to Hacking PostgreSQL – p. 16

Memory Management Conventions

You should sometimes pfree() your allocations
If the context of allocation is known to be short-lived,
don’t bother with pfree()

If the code might be invoked in an arbitrary memory
context (e.g. utility functions), you should pfree()

The exact rules are a bit hazy

Be aware of the memory allocation assumptions made
by functions you call

Memory leaks, per se, are rare in the backend
All memory is released eventually
A “leak” is when memory is allocated in a
too-long-lived memory context: e.g. allocating some
per-tuple resource in a per-txn context

Introduction to Hacking PostgreSQL – p. 17

Error Handling

Most errors reported by ereport() or elog()
ereport() is for user-visible errors, and allows
more fields to be specified (SQLSTATE, detail, hint,
etc.)

Implemented via longjmp(3); conceptually similar to
exceptions in other languages

elog(ERROR) walks back up the stack to the
closest error handling block; that block can either
handle the error or re-throw it
The top-level error handler aborts the current
transaction and resets the transaction’s memory
context

Releases all resources held by the transaction,
including files, locks, memory, and buffer pins

Introduction to Hacking PostgreSQL – p. 18

Error Handling, Cont.

Custom error handlers can be defined via PG_TRY()

Think about error handling!
Never ignore the return values of system calls

Should your function return an error code, or
ereport() on failure?

Probably ereport() to save callers the trouble of
checking for failure
Unless they can provide a better (more descriptive)
error message, or they might not consider the failure
to be an actual error

Use assertions (Assert) liberally to detect
programming errors, but never errors the user might
encounter

Introduction to Hacking PostgreSQL – p. 19

Part 4: Your First Patch

Step 1: Research and preparation
Is your new feature actually useful? Does it just
scratch your itch, or is it of general value?
Does it need to be implemented in the backend, or
can it live in pgfoundry, contrib/, or elsewhere?
Does the SQL standard define similar or equivalent
functionality?

What about Oracle, DB2, . . . ?
Has someone suggested this idea in the past?

Search the archives and TODO list
Most ideas are bad

Introduction to Hacking PostgreSQL – p. 20

Sending A Proposal

Step 2: Send a proposal for your feature to
pgsql-hackers

Patches that appear without prior discussion risk
wasting your time

Discuss your proposed syntax and behavior
Consider corner cases, and how the feature will
relate to other parts of PostgreSQL (consistency is
good)
Will any system catalog changes be needed?
Backward-compatibility?

Try to reach a consensus with -hackers on how the
feature ought to behave

Introduction to Hacking PostgreSQL – p. 21

Implementation

Step 3: Implement the patch
A general strategy is to look at how similar parts of
the system function

Don’t copy and paste (IMHO)
· Common source of errors
Instead, read through similar sections of code to
try to understand how they work, and the APIs
they are using
Implement (just) what you need, refactoring the
existed APIs if required

Ask for implementation advice as needed
(-hackers or IRC)
Consider posting work-in-progress versions of the
patch

Introduction to Hacking PostgreSQL – p. 22

Testing, Documentation

Step 4: Update tools
For example, if you’ve modified DDL syntax, update
psql’s tab completion
Add pg_dump support if necessary

Step 5: Testing
Make sure the existing regression tests don’t fail
No compiler warnings
Add new regression tests for the new feature

Step 6: Update documentation
make check in doc/src/sgml does a syntax
check that is faster than building the whole SGML
docs
Check documentation changes visually in a browser

Introduction to Hacking PostgreSQL – p. 23

Submitting The Patch

Step 7: Submit the patch
Use context diff format: diff -c

Review every hunk of the patch
Is this hunk necessary?
Does it needlessly change whitespace or existing
code?
Does it have any errors? Does it fail in corner
cases? Is there a more elegant way to do this?

Work with a code reviewer to make any necessary
changes
If your patch falls through the cracks, be persistent

The developers are busy and reviewing patches is
difficult, time-consuming, and unglamorous work

Introduction to Hacking PostgreSQL – p. 24

Part 5: WHEN Clause

We’ll be walking you through the implementation of the
WHEN clause for CREATE TRIGGER

You can see a patch at
http://neilconway.org/talks/hacking/when_clause.patch

Defined by SQL:2003, implemented by Oracle and
others

Optional clause; when the WHEN expression evaluates
to false (or NULL), the associated trigger is not fired

In the WHEN clause, OLD and NEW tuples can be
referenced:

In UPDATE and DELETE triggers, OLD is the tuple
being replaced
In UPDATE and INSERT triggers, NEW is the tuple
being added

Introduction to Hacking PostgreSQL – p. 25

http://neilconway.org/talks/hacking/when_clause.patch

WHEN Clause Considerations

Syntax is easy: defined by SQL spec

CREATE TRIGGER name { BEFORE | AFTER } { event [OR . . .] }

ON t ab l e [FOR [EACH] { ROW | STATEMENT }]

[WHEN (expr)]

EXECUTE PROCEDURE funcname (arguments)

Introduction to Hacking PostgreSQL – p. 26

WHEN Clause Considerations, cont.

Behavioral questions:
Should we allow WHEN clause for statement-level
triggers? (SQL spec doesn’t specify)
What subset of SQL should we allow? Aggregate
functions, subqueries, . . . ?

No backward-compat concerns

Obviously needs to be in the backend

Useful for at least SQL-spec compliance

Introduction to Hacking PostgreSQL – p. 27

Implementation Outline

1. Add support for the new syntax to the parser

2. Update the CREATE TRIGGER parsenode

3. Add support for WHEN clause to analysis phase

4. Add new field to pg_trigger system catalog,
containing the WHEN clause

5. Modify implementation of CREATE TRIGGER to add the
WHEN clause to the new pg_trigger row

6. Add support for the WHEN clause when firing triggers in
the executor (most of the difficulty is here)

7. Update pg_dump/psql to support the WHEN clause

Introduction to Hacking PostgreSQL – p. 28

Parser Changes

Trivial, as it turns out — see page 1

1 CreateTr igStmt :

2 CREATE TRIGGER name Tr iggerAct ionTime Tr iggerEvents ON

3 qual i f ied_name TriggerForSpec TriggerWhen EXECUTE PROCEDURE

4 func_name ’ (’ Tr iggerFuncArgs ’) ’

5 {

6 CreateTr igStmt ∗n = makeNode(CreateTr igStmt) ;

7 /∗ . . . ∗ /

8 n−>when = $10 ;

9 $$ = (Node ∗) n ;

10 }

11

12 TriggerWhen :

13 WHEN ’ (’ a_expr ’) ’ { $$ = $3 ; }

14 | /∗EMPTY∗ / { $$ = NULL; }

Introduction to Hacking PostgreSQL – p. 29

Parsenode Changes

The definition of the CreateTrigStmt parse node is
closely derived from the syntax of CREATE TRIGGER

Add a new field to the struct to stash the WHEN clause

Be sure to update equalfuncs.c and copyfuncs.c

See pages 2 and 3 of handout

Next : update the analysis phase. How do we parse
WHEN clauses like OLD.a <> NEW.a?

Introduction to Hacking PostgreSQL – p. 30

Expressions In Postgres

The WHEN clause is a boolean expression

An expression is a tree of Expr nodes
There are Expr subclasses for the different kinds of
expressions: function calls, operator invocations,
constants, variables, etc.

ExecEvalExpr() evaluates an expression by
recursing through this tree. For example:

A function is evaluated by first evaluating its
arguments, then calling the function itself
A constant value is trivial to evaluate

See pages 4 and 5 of handout

Introduction to Hacking PostgreSQL – p. 31

Variable Expressions

In an expression like t.a > 10, t.a is a range variable,
colloquially known as a table column

Represented by the Var expression type

How are range variables implemented?
Var.varno identifies the variable’s table (t above)
Var.varattno is the attribute number of the
variable’s column

varno is an index into the expression’s range table
The range table is the set of relations that can be
referenced in expressions — each Query has an
associated range table

Introduction to Hacking PostgreSQL – p. 32

Analysis Phase

The analysis phase is where we lookup identifiers;
therefore, during the analysis phase, we need to add
range table entries for the NEW and OLD relations

Other analysis phase work is straightforward:
Exclusive-lock the target relation
Disallow subqueries and aggregates in the WHEN
clause

See pages 4 through 6 of the handout

Introduction to Hacking PostgreSQL – p. 33

System Catalogs

The format of the system catalogs is defined by header
files, in the src/include/catalog directory

These files are normal C headers, with some special
macros
These macros are pre-processed for bootstrapping
(initdb)

Nice effect: access to system catalog fields is the same
as accessing a C struct

A compiled copy of the backend depends upon the
exact definition of the system catalogs

If you modify the system catalog format, bump the
catalog version to force initdb

See pages 6 and 7

Introduction to Hacking PostgreSQL – p. 34

System Catalog Changes

Triggers are stored in the pg_trigger catalog

To add support for WHEN, we add a new field to
FormData_pg_trigger in pg_trigger.h

Add tgqual field, which stores a serialized version of
the WHEN expression tree

Review: nodeToString() serializes a Node

We can use stringToNode() to reconstruct the
expression tree when needed

Introduction to Hacking PostgreSQL – p. 35

CREATE TRIGGER Changes

CREATE TRIGGER needs to store the textual
representation of the WHEN clause in the new row it
inserts into pg_trigger

Also reject WHEN clause for statement-level triggers here

Also create a dependency between the elements of the
WHEN expression and the trigger

If the WHEN clause references column a of the table,
DROP COLUMN a should be disallowed (without
cascade)

See page 7

Introduction to Hacking PostgreSQL – p. 36

TriggerDesc Updates

The Relation struct contains metadata about an
opened relation: the relation’s pg_class row, a
description of the format of its tuples, associated
indexes, associated triggers, etc.

Stored in the relcache

See pages 3 and 4

Introduction to Hacking PostgreSQL – p. 37

TriggerDesc Updates, cont.

Trigger information is stored in a subsidiary struct,
TriggerDesc, which itself contains a Trigger struct
for each trigger on the relation

Add a field to Trigger to store the WHEN clause
Fill it in when TriggerDesc constructed

Remember to update support functions!
FreeTriggerDesc(), CopyTriggerDesc(),
equalTriggerDescs()

Introduction to Hacking PostgreSQL – p. 38

Executor Changes

The guts of the required changes are in the executor

We need to evaluate the WHEN clause before we fire a
row-level trigger

To do that, we need to:
Preprocess the WHEN clause to get it ready to be
evaluated
Teach the executor to be able to evaluate
expressions referencing the NEW and OLD relations

See pages 8 through 10

Introduction to Hacking PostgreSQL – p. 39

OLD and NEW in Executor

Review: ExecEvalExpr() evaluates expression trees

To do so, it uses an ExprContext

All info needed to evaluate an expression
To evaluate an expression, you find an appropriate
ExprContext, setup the necessary information,
then use ExecEvalExpr()

The executor keeps a “per-tuple ExprContext”
that we can use: it is reset for each tuple that is
output

See pages 10 and 11

Introduction to Hacking PostgreSQL – p. 40

Evaluating Variable Expressions

ExecEvalVar() is called by ExecEvalExpr() to
evaluate Var expressions:
switch (variable->varno)

{

case INNER: /* get the tuple from the inner node */

slot = econtext->ecxt_innertuple;

break;

case OUTER: /* get the tuple from the outer node */

slot = econtext->ecxt_outertuple;

break;

default: /* get the tuple from the relation being scanned */

slot = econtext->ecxt_scantuple;

break;

}

Introduction to Hacking PostgreSQL – p. 41

Evaluating Variables

Note that the varno is ignored, except for the special
INNER and OUTER varnos

The code assumes that the caller will insert the
current tuple into the ExprContext’s “scan tuple”
slot before calling ExecEvalExpr

This won’t work for us: the WHEN expression could
reference two different tuples (OLD and NEW)

How can we solve this?

Introduction to Hacking PostgreSQL – p. 42

Solution

Add two more special varnos, TRIG_OLD_VARNO and
TRIG_NEW_VARNO

In the analysis phase, rewrite the varnos in the
expression so that references to the special relations
are assigned the right varno

Machinery for this exists: ChangeVarNodes walks
an expression tree, changing varno x → y in every
node of the tree

Add two new slots to ExprContext to hold the OLD
and NEW tuples, and setup these slots before calling
ExecEvalExpr

In ExecEvalVar, add two more special-cases for the
two special varnos, fetching from the appropriate slots
of the ExprContext

Introduction to Hacking PostgreSQL – p. 43

Checking The Qualification

Before firing triggers, check the WHEN clause

For BEFORE triggers, this is easy. Add code to invoke
ExecQual() to:

ExecBRDeleteTriggers()

ExecBRInsertTriggers()

ExecBRUpdateTriggers()

Use the current executor instance to get per-tuple
ExprContext; try to avoid overhead by preparing
WHEN expression the first time the trigger is fired for this
command

See page 10

Introduction to Hacking PostgreSQL – p. 44

AFTER Trigger Support

Unfortunately, supporting AFTER triggers is not so easy

AfterTriggerSaveEvent() enqueues a trigger to be
invoked later, such as at the end of the current query

We can’t check the WHEN condition here

Instead, we need to check the WHEN condition when the
saved events are fired — but we won’t necessarily have
an executor instance to use!

Should just be a Small Matter of Programming

Introduction to Hacking PostgreSQL – p. 45

Subqueries inWHEN clause

Subqueries in the WHEN clause would be convenient

Unfortunately, they’re hard to implement

We’d have to run the full-fledged query planner on the
expression

Postgres has the infrastructure to do this, it’s just a
matter of using it

All the other code we’ve written is prepared to handle
subqueries

Introduction to Hacking PostgreSQL – p. 46

psql Support

psql’s \d command includes the definitions of the
triggers on a table. How do we get it to include the
WHEN clause?

psql gets trigger definitions by calling the backend
function pg_get_triggerdef(), so we need to
update it

There is already machinery for pretty-printing
expressions as SQL text, so we can reuse all that

One hurdle: tgqual may contain the special
TRIG_OLD_VARNO and TRIG_NEW_VARNO varnos,
which the expression printing code doesn’t understand

Quick hack: use ChangeVarNodes() to switch back
to original varnos

See pages 11 and 12
Introduction to Hacking PostgreSQL – p. 47

pg_dump Support

We need to update pg_dump to dump WHEN clause

pg_dump reconstructs the CREATE TRIGGER command
for a trigger by examining the trigger’s pg_trigger row

For WHEN, this isn’t so easy:
tgqual references TG_OLD_VARNO and
TG_NEW_VARNO, so there is no easy way to
reconstruct tgqual in a client app

Change pg_dump to use pg_get_triggerdef() to
send a fully-formed CREATE TRIGGER to the client

See pages 11 and 12

Introduction to Hacking PostgreSQL – p. 48

Regression Tests

Invoked by make check

Run out of src/test/regress

Put tests in sql/triggers.sql

Reflect changes in expected/triggers.out

See page 12

Introduction to Hacking PostgreSQL – p. 49

Documentation

Documentation is in DocBook SGML

Located in docs/src/sgml

SQL command reference in
ref/create_trigger.sgml

Be sure to add an example

See page 12 and 13

Introduction to Hacking PostgreSQL – p. 50

TODO Items

As implemented, the patch has some deficiencies:
No support for AFTER triggers
No support for subqueries in the WHEN clause
Leaks the when field in FreeTriggerDesc()

setup_trigger_quals() does some redundant
work

Introduction to Hacking PostgreSQL – p. 51

	Outline
	Part 1: Development Environment
	Development Tools
	Text Editor
	Part 2: PostgreSQL Architecture
	Architecture Diagram
	The Parser
	Semantic Analysis
	Rewriter, Planner
	Executor, Utility Processor
	Part 3: Common Idioms: Nodes
	Nodes, Cont.
	Nodes: Hints
	Memory Management
	Memory Management, cont.
	Memory Management Conventions
	Error Handling
	Error Handling, Cont.
	Part 4: Your First Patch
	Sending A Proposal
	Implementation
	Testing, Documentation
	Submitting The Patch
	Part 5: 	exttt {WHEN} Clause
		exttt {WHEN} Clause Considerations
		exttt {WHEN} Clause Considerations, cont.
	Implementation Outline
	Parser Changes
	Parsenode Changes
	Expressions In Postgres
	Variable Expressions
	Analysis Phase
	System Catalogs
	System Catalog Changes
		exttt {CREATE TRIGGER} Changes
		exttt {TriggerDesc} Updates
		exttt {TriggerDesc} Updates, cont.
	Executor Changes
		exttt {OLD} and 	exttt {NEW} in Executor
	Evaluating Variable Expressions
	Evaluating Variables
	Solution
	Checking The Qualification
		exttt {AFTER} Trigger Support
	Subqueries in 	exttt {WHEN} clause
		exttt {psql} Support
		exttt {pg_dump} Support
	Regression Tests
	Documentation
	TODO Items

